Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 85 (1981), S. 2463-2466 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 26 (1934), S. 1226-1226 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 32 (1940), S. 449-454 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 41 (1949), S. 2844-2847 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Melbourne, Australia : Blackwell Science Pty
    Austral ecology 30 (2005), S. 0 
    ISSN: 1442-9993
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract  Understanding the ecological role of artificial structures, such as seawalls, in shallow coastal waters is necessary in order to plan sound strategies of conservation and management of natural habitats. In Sydney Harbour (NSW, Australia), about 50% of the foreshore is made of retaining seawalls This study evaluates the changes caused to natural assemblages of organisms by these structures, by comparing intertidal assemblages between seawalls and vertical rocky shores. The following hypotheses were tested: that assemblages on seawalls would differ from those on rocky shores at mid-, but not at low-shore levels; where assemblages differ between habitats, there would be differences in cover/abundances of widespread species; patterns would be consistent among locations and through time; the variability of assemblages at the scales of 10s of cm and metres would differ between seawalls and rocky shores at mid- and low-shore levels. To test these hypotheses, assemblages on seawalls and rocky shores were sampled at three locations, at roughly 4-monthly intervals, over a period of about 18 months. Results indicated that mid-shore assemblages on seawalls were different from those on rocky shores, but this was not the case at low-shore levels. Few taxa were unique to either habitat. Cover of common species of algae and sessile animals and abundances of mobile grazers were variable with few consistent patterns. Variability at the scales sampled differed between habitats and heights on the shore. Seawalls and rocky shores, in general, supported a similar suite of species, but patterns of abundance and variation differed among locations and from height to height in each habitat. The implications of these findings for the future management of seawalls are briefly considered.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The cover of foliose algae is sparse to non-existent above a low-level algal zone on many shores in N.S.W., except in rock-pools. Above this algal zone, encrusting algae, mostly Hildenbrandia prototypus, occupy most of the primary substratum on sheltered shores. Experimental manipulations at midtidal levels were used to test hypotheses about the effects of grazing by molluses and of physical factors during low tide on this pattern of algal community structure. Fences and cages were used to exclude grazers: molluscs grazed under roofs and in open areas. Cages and roofs provided shade, and decreased the harshness of the environment during low tide: fences and open areas had the normal environmental regime. In the absence of grazers, rapid colonization of Ulva and slower colonization by other foliose algae occurred in all experimental areas. The rate of colonization by Ulva sporelings was initially retarded on existing encrusting algae, but after a few months, cover of Ulva equalled that on cleared rock. Most species of algae only grew to maturity inside cages, and remained as a turf of sporelings inside fences. No foliose algae grew to a visible size in open, grazed areas. Grazing thus prevents the establishment of foliose algae above their normal upper limit on the shore, but the effects of physical factors during low tide prevent the growth of algae which become established when grazers are removed. Physical factors thus limit the abundance of foliose algae at mid-tidal levels. The recolonization of cleared areas by Hildenbrandia was not affected by the presence of a turf of sporelings, nor by the shade cast by roofs, but was retarded in cages where mature algae formed a canopy. Even under such a canopy, Hildenbrandia eventually covered as much primary substratum as in open, grazed areas. This encrusting alga is able to escape from the effects of grazing by having a tough thallus, and by its vegetative growth which allows individual plants to cover a lot of substratum, and by the tendency for new individuals to start growing from small cracks and pits in the rock, which are apparently inaccessible to the grazers. Mature foliose algae are removed from the substratum by waves, and many individual plants died during periods of hot weather. Sporelings in a turf were eliminated, after experimental fences were removed, by the combined effects of macroalgal grazers, which invaded the areas, and microalgal grarers which ate the turt from the edges inwards. The results obtained here are discussed with respect to other studies on limits to distribution of intertidal macroalgae, and the role of grazing in the diversity and structure of intertidal algal communities. Some problems of these experimental treatments are also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The prosobranch limpet Cellana tramoserica grazes on microalgae, including the spores of macroalgae, and coexists with the pulmonate limpets Siphonaria denticulata and S. virgulata at mid-tidal levels on sandstone shores in New South Wales. These siphonarians graze on macroalgae, leaving the basal parts of the thalli intact. Where Cellana graze, they are capable of removing all algae; where Siphonaria graze, they leave at least a thin film of alga on the rocks, which is available to Cellana. S. denticulata normally show invariant homing behaviour, whereas S. virgulata tend to move around at random when Cellana are present, but apparently home when Cellana are absent. Both siphonarians have been observed to show opportunistic behavioural responses by moving towards patches of macroalgal foods when they become available. Experimental ecclosures of limpets at different densities and in different combinations revealed that Cellana tramoserica suffered increased mortality and reduced growth due to intraspecific competition when at increased densities. There was no effect on Cellana of increased densities of either species of Siphonaria. Nor was there any interspecific interaction between the siphonarians. Both species of Siphonaria showed some reduction of growth at increased intraspecific density. More importantly, both showed increased mortality when enclosed with low densities of Cellana. Larger densities of Cellana had no effect; the numbers of Cellana could not be maintained because of the reductions caused by intraspecific competition. Even after 27 weeks in enclosures with Cellana, the numbers of Siphonaria never declined to zero in any experimental enclosure. Thus, Cellana has a competitive effect on the survival of siphonarian limpets, but is unable to exclude them from an area of the shore. Siphonaria spp., in contrast, have no effect on Cellana. The nature of the competitive interactions between these types of limpets is explaied in terms of their methods of feeding; Cellana can exploit the food-resource before it reaches a suitable size for Siphonaria. The coexistence of Siphonaria spp. with Cellana is discussed with respect to the behaviour of the pulmonates. Intraspecific competition leading to reduced densitities of Cellana, however, will ensure that Cellana cannot exploit all the food resources, and some will be available to Siphonaria. The consequences of inter- and intra-specific competition among grazing gastropods are discussed with reference to the structure of intertidal communities, and it appears that competition for food is fundamentally different from competitive interactions for space in the organization of such communities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary At low levels on shores in New South Wales, foliose algae are abundant and often occupy all substrata; microalgal grazing gastropods are rare or absent. At higher levels, foliose algae are sparse or absent and grazing gastropods are abundant. Hypotheses for the causes of the lower vertical limits of distribution of these grazers include the effects of increased predation or the deleterious physiological effects of increased period of submergence at lower levels on the shore. Alternatively, the presence of the algae, because they occupy space and deprive the grazers of substratum for feeding, may prevent the downward movement, or survival of the grazers at low levels. Under the first two of these hypotheses, algae are able to colonize and grow in low-shore areas as an indirect result of factors which remove grazers. Under the third hypothesis, the algae are directly responsible for the lack of grazers. Experimental clearings of the low-shore algae and introductions of the mid-shore limpets Cellana tramoserica and Siphonaria denticulata were used to test these hypotheses. C. tramoserica grazes microalgae and removes them from the substratum, preventing colonization. S. denticulata, in contrust, crops the algae, leaving a visible cover of algae on the substratum, which can grow rapidly. Because of its method of feeding, S. denticulata had no measurable impact on the rates of colonization, nor on the dry weights of algae, compared with those of ungrazed areas. C. tramoserica could keep cleared areas tree from foliose algae, but only when the limpets were mainfained in great density (10 per 900 cm2). They were less effective where wave-action was greater. Neither species of limpets could survive when placed onto beds of mature algae, because they had no substratum on which to cling and were swept away by the waves. C. tramoserica did not invade clearings below their lower limit of distribution where they had to move over a bed of foliose algae. Few C. tramoserica moved directly downshore into cleared areas. When placed on bare rock within low-shore beds of algae of different ages, S. denticulata remained amongst the algae and maintained their tissue-weights. Few C. tramoserica remained in areas with well-developed algae, compared with areas having sparse algal growth. Those Cellana which remained amongst well-developed algae lost weight, whereas limpets in areas with less algal growth mammtained their weights. In experimental cages in low-shore beds of algae, where the limpets were inaccessible to potential predators, C. tramoserica lost weight and died. On cleared areas they survived for many weeks, but lost weight and died as algae grew and covered the substratum. In the absence of predation, the micro-algal grazer C. tramoserica could not survive in lowshore areas because algae grew too fast and occupied the substratum, making it inaccessible for the limpets to graze; the algae, once grown beyond small sporelings, are not a suitable food-source for C. tramoserica, and the loss of weight and death of these limpets is attributable to starvation. The lower limit of distribution of C. tramoserica is not due to the direct effects of physical factors associated with prolonged submersion, nor to the impact of predators, but is apparently determined by the presence of rapidly growing, extensive beds of foliose algae at low levels on the shore. The cause of the limit of distribution of S. denticulata is not yet known and predation may prove to be important. Removal of S. denticulata from low-shore algal beds would not, however, affect the domination of substrata by algae. Grazing by S. denticulata at very great density had no effect on algal cover nor weight. In the intertidal community studied, the persistence of a low-shore algal zone, bounded above by abundant grazers is not influenced by the activities of predators, but is a direct result of interactions between the grazers and the algae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 56 (1983), S. 169-179 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In order to estimate the true diet of predators, the prey of a number of predators is recorded at one time. Such sampling underestimates the true diet during a period of time. Where handling times of different types of prey are very different, these estimates will be biased, because prey that take a relatively long time to be eaten will be overestimated. We examined a rocky intertidal predatorprey system and demonstrated the existence of such bias. A number of hypothetical correlates of the bias were also investigated. As anticipated, variations in handling times were a major factor, but neither taxonomic affinity nor absolute size of the prey could predict the degree of underestimation in the true diet for any given type of prey. A previously described correction for this type of bias was tested, but found to be unsatisfactory. We suggest that it was too insensitive to variability in handling times. A simple computer model incorporating differences among prey in their handling times was also unable to predict the bias, but did indicate that non-random selection of prey was occurring. We concluded that where such biases are likely to occur, information on the handling times of different prey and/or accurate estimates of the true diets of the predators are essential for the predatory interaction to be interpreted properly. These results were discussed in relation to published accounts of diets of predators in rocky intertidal habitats. Many studies have not presented data on handling times of prey in the field, and the magnitude and importance of potential biases in these studies are therefore difficult to assess.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary At mid-shore levels on rocky shores in New South Wales, grazing gastropods are the dominant species in sheltered areas. Where wave-exposure is great, barnacles occupy most of the space. At intermediate levels of waveexposure, there are mixtures of grazing gastropods and barnacles, and the patterns of occupancy of space, and structure of the community change from time to time. The major species found in these areas are the coronuloid barnacle Tesseropora rosea, the patellid limpet Cellana tramoserica, the smaller acmaeid limpet, Patelloida latistrigata, which is mostly confined amongst barnacles, and the predatory whelk Morula marginalba. The roles of each of these species in determining the structure and persistence of intertidal communities were investigated by experimental manipulations of the densities of each of these organisms. In most experiments, a range of densities of limpets and barnacles was used, rather than the simple removal of all of one species. Recruitment of Cellana was negatively associated with increasing density of adult limpets, and with increasing density of barnacles. Growth and survival of juvenile Cellana were decreased by increasing densities of barnacles, probably because barnacles occupied space, preventing limpets from grazing. Morula had no effect on recruitment or survival of juvenile Cellana. Recruitment of juvenile Patelloida was not affected by different densities of barnacles, but survival to adult sizes was poor in areas where whelks are active. In areas where whelks were removed, Patelloida showed increased survivorship with increased cover of barnacles, probably because Patelloida amongst barnacles found refuge from the superior competitive effects of Cellana. The settlement and subsequent survival of Tesseropora were affected in complex ways by the activities of Cellana. At great densities, Cellana can have deleterious effects on newly-settled barnacles, probably by crushing them whilst grazing. In some areas, and at some densities, however, limpets can have beneficial effects on the recruitment and/or survival of Tesseropora. The limpets graze the juvenile stages of growth of foliose macroalgae, preventing them from growing up to pre-empt the rock-surface (thus preventing settlement of barnacles) or to smother alreadysettled barnacles. The effect of limpets on the recruitment and survival of barnacles in any area is a function of the densities of limpets and barnacles, and the height on the shore and local weather (the latter factors influence the rates of growth of algae). Increased cover of the rock-surface by adult barnacles caused reductions in the densities of Cellana. Limpets migrated away from areas of great cover of barnacles, and, if confined in such areas, starved and lost weight. The dispersion, as well as the density of the barnacles was important in determining the effects of barnacle cover. Where barnacles occupied half the space, but were scattered, leaving only small patches of bare rock, they had the same deleterious effects on Cellana as in areas where they were spread evenly to occupy most of the rock-surface. Thus, barnacles could invade areas dominated by limpets provided they recruited in sufficient numbers. They did not have to saturate an area to displace the Cellana. In these communities, all of the species can be considered to have important roles in the establishment and maintenance of community structure. We conclude that interpretations of the roles of individual species must be based on direct, experimental investigation. In this system, there was no indication that many of the species were functionally insignificant. The present experiments also revealed that the interactions among even a few species are very varied and complex; proper investigation requires considerable replication and repeated experimentation in different places and years. Finally, although the present studies allow reliable interpretations of observed patterns of occupancy and dominance on natural shores, the experiments did not provide a predictive framework to anticipate the future events in any area. This is because of great variability in the timing and intensity of recruitment of planktonic propagules of all the components in the system, and in the density and activity of predatory whelks in different areas. These results suggest that tightly co-evolved community relationships are not likely to be important, even if they appear to exist, in communities where most of the species have widely dispersed pelagic offspring and interact in diverse and complex ways at different densities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...