Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 22 (1989), S. 4173-4179 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 23 (1990), S. 4258-4269 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 24 (1991), S. 322-325 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 26 (1993), S. 4184-4191 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 2183-2192 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Our earlier polyelectrolyte brush theory [Macromolecules 22, 4173 (1989)] was derived by equating the sum of the nonelectrostatic and electrostatic potentials of the polymer segment to an overall parabolic potential shown to exist in the brush by Milner, Witten, and Cates (MWC) [Macromolecules 21, 2610 (1988)]. Here we correct the theory to take into account the finite extensibility of the chains by adopting the non-Gaussian stretch (or entropy) term of Shim and Cates [J. Phys. France 50, 3535 (1989)]. This correction leads to brush heights which will never exceed the chain length; an aspect that was not accounted for in the earlier work of MWC. In addition, the ions of the added symmetric electrolyte are considered to be hard spheres, the size of the cation and anion assuming different values in general. The total electrochemical potential of the ions, therefore, includes a volume exclusion term as well. The ions are assumed to "view'' the solvent as a continuum (characterized only by its dielectric constant) and the brush layer as an obstacle course of randomly distributed spherical hard segments. The treatment is made simple by assuming a regime where the volume fraction of ions is much lower than the segment or solvent volume fractions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 32 (1993), S. 553-563 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 33 (1987), S. 558-572 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A theoretical framework useful for predicting the steady state response of enzyme-pH electrodes is developed. The model takes into account that the catalytic activity of the enzymes as well as the degree of dissociation of the product acids and bases is strongly dependent upon the local pH, and that buffering salts present in solution facilitate the transport of H+ ions. It is shown that the electrode should operate under substrate diffusion-limited conditions and the concentration of H+ ions should not have steep variations within the enzymic membrane. This condition can be fulfilled by adjusting the buffer concentration in the bulk solution. In the latter conditions the electrode response does not depend on the actual kinetics of the enzymic reaction, and can be predicted by an algebraic equation. The predictions are in excellent agreement with the experiments on penicillinase-pH and urease-pH electrodes.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 394-408 
    ISSN: 0006-3592
    Keywords: pH gradient ; pH control ; urease ; immobilized enzyme system ; sequential reactions ; acid-generating reaction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An optimal pH control technique has been developed for multistep enzymatic synthesis reactions where the optimal pH differs by several units for each step. This technique separates an acidic environment from a basic environment by the hydrolysis of urea within a thin layer of immobilized urease. With this technique, a two-step enzymatic reaction can take place simultaneously, in proximity to each other, and at their respective optimal pH. Because a reaction system involving an acid generation represents a more challenging test of this pH control technique, a number of factors that affect the generation of such a pH gradient are considered in this study. The mathematical model proposed is based on several simplifying assumptions and represents a first attempt to provide an analysis of this complex problem. The results show that, by choosing appropriate parameters, the pH control technique still can generate the desired pH gradient even if there is an acid-generating reaction in the system. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 394-408, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 410-420 
    ISSN: 0006-3592
    Keywords: pH gradient ; immobilized enzyme system ; sequential reactions ; urease ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Several examples of two-step sequential reactions exist where, because of the poor equilibrium conversion by the first reaction, it is desirable to conduct the two reactions simultaneously. In such a scheme, the product of the first reaction is continuously removed by the second reaction, thus not allowing the first reaction to approach chemical equilibrium. Therefore, the first reaction is allowed to proceed in the desired direction at an appreciable rate. However, in many biochemical applications where enzyme catalysts are involved, the enzyme's activities are strong functions of pH. Where the pH optima of the first and second reaction differ by three to four units, the above reaction scheme would be difficult to implement. In these cases, the two reactions can be separated by a thin permeable membrane across which the desired pH gradient is maintained. In this article, it was shown, both by theory and experiment, that a thin, flat membrane of immobilized urease can accomplish this goal when one face of the membrane is exposed to the acidic bulk solution (pHb = 4.5) containing a small quantity of urea (0.01 M). In this particular case, the ammonia that was produced in the membrane consumed the incoming hydrogen ions and thus maintained the desired pH gradient. Experimental results indicate that with sufficient urease loading, the face of the membrane opposite to the bulk solution could be maintained at a pH that would allow many enzymes to realize their maximum activities (≈ 7.5). It was also found that this pH gradient could be maintained even in the presence of a buffer, which greatly enhances the transport of protons into the membrane. © 1993 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 718-722 
    ISSN: 0006-3592
    Keywords: enzyme immobilization ; pH control ; urease ; glucose isomerase ; xylose ; xylulose ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The synthesis of a variety of important biochemicals involves multistep enzyme-catalyzed reactions. In many cases, the optimal operating pH is much different for the individual enzymatic steps of such synthesis reactions. Yet, it may be beneficial if such reaction steps are combined or paired, allowing them to occur simultaneously, in proximity to one another, and at their respective optimal pH. This can be achieved by separating the micro-environments of the two steps of a reaction pathway using a thin urease layer that catalyzes an ammonia-forming reaction. In this article, the pH control system in a commercial immobilized glucose (xylose) isomerase pellet, which has an optimal pH of 7.5, is demonstrated. This system allows the glucose isomerase to have near its optimal pH activity when immersed in a bulk solution of pH 4.6. A theoretical analysis is also given for the effective fraction of the immobilized glucose isomerase, which remains active when the bulk pH is at 4.6 in the presence of 20 mM urea versus when the bulk pH is at its optimal pH of 7.5. Both theoretical and experimental results show that this pH control system works well in this case. © 1996 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...