Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 312 (1983), S. 163-168 
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract It has often been stated that fission fragment angular anisotropy, as predicted by equilibrium statistical theory, should disappear with increasing spin of the composite nucleus. However, several recent experimental studies reveal strong anisotropies for fission fragments from high-spin nuclear systems. We discuss this apparent discrepancy and its relationship to the rigid-rotor approximation used in the standard theory. A systematic comparison is given for fission fragment anisotropies from many experiments via the empirical parametersK 0 2 andℐ eff. These systematics indicate a strong regularity, provided one allows for the perturbing effects of fission after transfer reactions. Many of the observed anisotropies exceed the predictions of the standard theory, but, as these predictions are based on a rigid rotor model, this does not seem particularly noteworthy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The reactions of 215 MeV16O with12C,181Ta,208Pb and238U have been studied. Inclusive measurements for4He emission are given from each target, and for fission and1,2,3H from Ta, Pb and U. For H/He a high-energy, forward-peaked component is observed with characteristics similar to those reported by others. At backward angles a low-energy, nearly-isotropic component is also observed for4He that cannot be accounted for by emission from fully accelerated fission products. The spectral shapes for this evaporative component are compared with statistical model calculations, and information is obtained concerning the effective barriers to emission. For the reactions of16O with12C, complete fusion seems to be overwhelmed by incomplete fusion. Fission angular distributions and cross sections are also presented and discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Angular and energy distributions have been measured for products of 3≦Z≦9 from reactions of 336MeV40Ar+107,9Ag/154Sm/197Au. The c.m. differential cross sections and mean energies increase as one moves from ≈100deg. to ≈170deg. similar to those for fission or evaporation-like emission. Most characteristics mimic those observed for4He, but the cross sections are smaller by a factor of as ≈1/300 for each reaction studied. A semiclassical analysis has been used to estimate the effective barriers to emission and root-mean-square spins of the emitters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Multiplicities are compared for4He evaporation in reactions of40Ar and56Fe projectiles (8.5 MeV/u) with withnatAg and238U targets. Coincidence requirements involving fusion-fission and projectile-like fragments have been used to select separate entrance-channel spin zones. Evaporation-like4He emission from the composite nuclei is shown to be large for mean spins ≦100ℏ, and to decrease dramatically with increasing spin. Coincidence measurements between two4He particles have also been studied for40Ar+natAg. This requirement is shown to select reactions that lead to evaporation residues and therefore to a zone of relatively low spin. The shapes of the4He spectra provide an interesting probe of the mechanism and also of the thermodynamic properties of hot nuclei.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Emission of4He in the reaction 334 MeV40Ar+238U has been studied by triple coincidence measurements that allow the separate identification of fusion fission and sequential fission. For the4He evaporative spectra from fusion fission the composite system is shown to be the predominant contributor; whereas, for sequential fission the dominant emission is from the fragments. This result demonstrates a correlation between evaporative emission probability and lifetime expectancy of the composite system. To account for the observed4He spectra two other mechanisms are necessary in addition to nuclear evaporation. At forward angles, the4He spectra from both fusion fission and sequential fission exhibit higher intensities and larger energies than those expected from purely evaporative processes. This forward-peaked component must be related to a very rapid or pre-thermalization stage of the reaction. At backward angles yet another component is observed for fusion fission. As it is sensitive to the fragment masses but does not carry the kinematic shift characteristic of their full acceleration, this component must originate near to the time of scission. The average4He energy for this component is approximately 17 MeV (c.m.), and its intensity is correlated with a plane perpendicular to the fission fragment separation axis. These signatures are similar to those for long range alpha particle emission in low energy fission. Alpha particles evaporated from the composite nuclei in fusion-fission reactions are shown to be preferentially associated with fission events which result in the more symmetric masses. This result is consistent with the notion that mass asymmetric fission is a faster process than symmetric fission. Such a correlation between mass asymmetry and lifetime is an essential part of the “fast fission” or “quasifission” idea, which has attracted much current attention.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The emission of4He and1H has been measured in coincidence with fission for reactions of 469-MeV56Fe+238U. By using a gas-ionization telescope in kinematic coincidence with a position-sensitive avalanche detector, the folding angle between two fission fragments was determined in order to distinguish fusion reactions from fission following smaller-momentum-transfer collisions. In both fusion fission and sequential fission reactions, the4He/1H energy spectra are relatively narrow with relatively flat angular distributions at backward angles and become broader in energy with enhanced cross-sections at forward angles. The extent of forward peaking is significantly greater for peripheral collisions than for central collisions. The light-charged-particle multiplicities are quite similar for4He and1H, being much larger for fusion fission than for sequential fission. Detailed comparisons of the spectral shapes with Monte Carlo simulations of reaction kinematics impose strong constraints on the participation of different emission sources. We find important contributions to the observed4He/1H emission both from accelerated fragments (FE) and from the composite system prior to fission (CE). For4He emission, the multiplicity of CE is much larger for fusion fission than for sequential fission, possibly as a consequence of the higher spins and shorter reaction times associated with deeply inelastic and quasi-elastic processes. For1H emission, a corresponding but somewhat smaller difference is observed for the CE multiplicities. An excess of4He/1H particles, found at forward angles in both fusion and sequential fission processes, cannot be attributed to evaporative emission from any fragments and therefore must originate in pre-thermalization emission.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Inclusive1H/4He emission has been studied for three reactions in “reversed kinematics”,40Ar/56Fe/86Kr (8.5MeV/u)+12C. The4He spectra include the heretofore unobserved region of low c.m. energies in the direction of the heavy reactant. A test of forward-backward symmetry is made for the hot-spot, moving source model; the data do not support the model. Effective emission barriers for4He evaporation are found to be within ∼10% of the corresponding fusion barriers, while for1H evaporation the emission barriers are more than 25% lower. It is possible that deformations predicted by the rotating liquid drop model can account for the4He evaporation spectra, but substantial change in the standard evaporation treatment is required to explain the spectra for1H.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 318 (1984), S. 231-237 
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Fusion excitation functions for1H and4He have been compared to a one-dimensional, barrier-penetration model. In contrast to fusion for heavier nuclei this simple model is completely adequate, except for the statically deformed targed233U. Empirical barrier heights are obtained and compared to those from two theoretical nuclear potentials. These empirical barriers (from cold reactants) are used as input for calculating evaporation spectra that arise from hot nuclear emitters. The excess of observed low-energy1H and4He emission signals information content concerning distortions of the hot nuclei.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...