Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Debris lobes with characteristic lengths, widths, and thickness of 30–200 km, 2–10 km, and 10–50 m, respectively, represent the main building blocks of deep-sea fans along the Norwegian–Barents Sea continental margin. Their formation is closely related to the input of clay-rich sediments to the upper continental slope by glaciers during periods of maximum ice advance. It is likely that slide release was a consequence of an instability arising from high sedimentation rates on the upper continental slope. The flow behavior of the debris lobes can be described by a Bingham flow model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Geologische Rundschau 85 (1996), S. 338-349 
    ISSN: 0016-7835
    Keywords: Key words Western Barents Sea ; Middle and Late Pleistocene ; Glacier-fed submarine fan ; Comparative study
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The Middle and Late Pleistocene succession on the glacier-fed fan at the mouth of Storfjorden trough was studied using high-resolution seismic data. Seven glacial advances to the shelf break during Middle and Late Pleistocene resulted in episodic high sediment input to the fan with real sedimentation rates of up to 172 cm/1000 years, separated by sediment-starved interstadials and interglacials. On the upper fan the high sediment input resulted in frequent slides and slumps, generating debris flows which dominate the mid-fan strata. Compared with the larger neighbouring Bear Island trough mouth fan, the Storfjorden trough mouth fan has a steeper fan gradient, narrower, thinner and shorter debris flow deposits and lower frequency of large scale sliding. Glacier-fed submarine fans receive their main sediment input from a glacier margin at the shelf break, as opposed to river-fed fans where sediment input occurs through a channel-levee complex. As a result, the depocentre of a river-fed fan is found on the mid-fan and the upper slope is mainly an area of sediment bypass, whereas the glacier-fed fan has an elongated depocentre across the uppermost fan. The river-fed fans are dominated by deposition from turbidity currents, whereas glacier-fed fans are dominated by debris flow deposits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 85 (1996), S. 338-349 
    ISSN: 1437-3262
    Keywords: Western Barents Sea ; Middle and Late Pleistocene ; Glacier-fed submarine fan ; Comparative study
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Middle and Late Pleistocene succession on the glacier-fed fan at the mouth of Storfjorden trough was studied using high-resolution seismic data. Seven glacial advances to the shelf break during Middle and Late Pleistocene resulted in episodic high sediment input to the fan with real sedimentation rates of up to 172 cm/1000 years, separated by sediment-starved interstadials and interglacials. On the upper fan the high sediment input resulted in frequent slides and slumps, generating debris flows which dominate the mid-fan strata. Compared with the larger neighbouring Bear Island trough mouth fan, the Storfjorden trough mouth fan has a steeper fan gradient, narrower, thinner and shorter debris flow deposits and lower frequency of large scale sliding. Glacier-fed submarine fans receive their main sediment input from a glacier margin at the shelf break, as opposed to river-fed fans where sediment input occurs through a channel-levee complex. As a result, the depocentre of a river-fed fan is found on the mid-fan and the upper slope is mainly an area of sediment bypass, whereas the glacier-fed fan has an elongated depocentre across the uppermost fan. The river-fed fans are dominated by deposition from turbidity currents, whereas glacier-fed fans are dominated by debris flow deposits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 13 (1993), S. 227-234 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A large submarine slide on the southern flank of the Bear Island Trough Mouth Fan, southwestern Barents Sea continental slope, has a run-out distance of about 400 km, a total volume of about 1100 km3, and is younger than 330 ka. Three seismic units, comprising mainly hemipelagic sediments has partly filled the slide scar. An increased sedimentation rate on the Bear Island Trough Mouth Fan from Late Pliocene time, probably in combination with abundant earthquakes, is the most likely cause of the slide. Based on these and previous studies, we suggest that large-scale slides were important sediment transport processes during Plio-Pleistocene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...