Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 21 (1982), S. 21-28 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 466 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 537-548 
    ISSN: 0886-1544
    Keywords: microtubules ; sea urchins ; kinesin ; mitosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In this report, we describe an in vitro system for analyzing microtubule-based movements in supernatants of sea urchin egg and embryo homogenates. Using video enhanced DIC microscopy, we have observed bidirectional saltatory particle movements on native taxol-stabilized microtubules assembled in low speed supernatants of Lytechinus egg homogenates, and gliding of these microtubules across a glass surface. A high speed supernatant of soluble proteins, depleted of organelles, microtubules, and their associated proteins supports the gliding of exogenous microtubules and translocation of polystyrene beads along these microtubules. The direction of microtubule gliding has been determined directly by observation of the gliding of flagellar axonemes in which the (+) and (-) ends could be distinguished by biased polar growth of microtubules off the ends. Microtubule gliding is toward the (-) end of the microtubule, is ATP sensitive, and inhibited only by high concentrations of vanadate. These characteristics suggest that the transport complex responsible for microtubule gliding in S2 is kinesin-like. The implications of these molecular interactions for mitosis and other motile events are discussed.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 4 (1984), S. 183-196 
    ISSN: 0886-1544
    Keywords: tubulin ; assembly ; mitotic apparatus ; bimane ; fluorescence microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Fluorescent derivatives of cellular proteins that retain their native characteristics have become useful probes to investigate the dynamics of specific cytoskeletal proteins. In the experiments reported here, a previously characterized fluorescent derivative of tubulin, bimane-tubulin [Wadsworth and Sloboda, 1982a], was used to investigate microtubule assembly in vitro. The results demonstrate that bimanetubulin was competent to assemble onto a variety of organizing centers in vitro, including microtubule organizing centers (MTOCs) present in homogenates of sea urchin eggs, isolated mitotic apparatuses (MAs), and lysed mitotic cells. When homogenates of fertilized sea urchin eggs containing MTOCs were incubated with bimane-tubulin at 37°C, discrete areas of linear fluorescence were observed. Only diffuse fluorescence was observed when calcium or colchicine was added to the homogenate or if the temperature was maintained at 0°C. Negative-stain electron microscopy of the fluorescent arrays revealed morphologically normal microtubules radiating from electron dense regions. When mitotic spindles, isolated in glycerol containing buffers and therefore cold stable, were incubated with bimane-tubulin, linear fluorescence was observed emanating from the spindle poles but not from the region occupied by the kinetochores. MAs incubated with bimane-labeled bovine serum albumin or bimane-labeled microtubule-associated proteins showed only diffuse fluorescence. However, when mitotic cells which were hypotonically lysed in the absence of detergents or microtubule stabilizing solvents, were perfused with bimane-tubulin intense fluorescence was observed in the asters and throughout the spindle. Two experiments suggested that the fluorescence observed in the results outlined above was due to the assembly of normal microtubules from the fluorescent subunits. First, the observed fluorescence was sensitive to cold temperataure, which is known to disassemble microtubules. Second, when the isolated, fluorescent MAs were examined by thin section electron microscopy, microtubules of normal diameter were seen. No aggregated material appeared associated with the walls of the microtubules, which might have been expected if the fluorescent protein was nonspecifically adsorbed to the microtubules. The results of these experiments demonstrate that isolated, stabilized MAs support the growth of new microtubules from the spindle poles while labile spindles, present in lysed cells, incorporate fluorescent tubulin throughout the spindle and asters. The significance of these results for hypotheses concerning microtubule assembly and disassembly during mitosis is discussed.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 8 (1987), S. 293-301 
    ISSN: 0886-1544
    Keywords: mitosis ; particle motility ; microtubules ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Observations on living mitoic cells have suggested that material in the spindle moves poleward during mitosis. In order to investigate this movement, sea urchin eggs have been microinjected with 0.25-μm diameter carboxylated fluorescent beads. When fluorescent beads were injected into unfertilized Lytechinus variegatus eggs, no motility was detected. When injected into mitotic cells, beads moved to the spindle poles. Individual beads moved rapidly, in a saltory fashion, and followed generally linear paths. Beads appeared to move along astral fibers, were generally excluded from thespindle proper, and accumulated at the spindle poles. Some dispersion of the beads away from the pole was observed as cells completed mitosis, but the majority of beads retained a polar location. After depolymerization of spindle microtubules with nocodazole, some dispersion of beads into the cytoplasm was also observed. Beads moved along taxol-induced astral microtubules and accumulated at astral centers. These observations reveal that negatively chargedbeads accumulate rapidly at mitotic centers, moving toward the minus end of the microtubules. Neither the bidirectional motility of similar beads in interphase cells nor the plus-end-directed bead motility seen in axons was observed in these mitotic cells.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 18 (1991), S. 131-142 
    ISSN: 0886-1544
    Keywords: mitosis ; microtubules ; tubulin incorporation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A bioriented chromosome is tethered to opposite spindle poles during congression by bundles of kinetochore microtubules (kMts). At room temperature, kinetochore fibers are a dominant component of mitotic spindles of PtK2 cells. PtK2 cells at room temperature were injected with purified tubulin covalently bound to DTAF and congression movements of individual chromosomes were recorded in time lapse. Congression movements of bioriented chromosomes between the poles occur over distances of 4.5 μm or greater. DTAF-tubulin injection had no effect on either the velocity or extent of these movements. Other cells were lysed, fixed, and the location of DTAF-tubulin incorporation was detected from digitally processed images of indirect immunofluorescence of an antibody to DTAF. Microtubules were labeled with an anti-beta tubulin antibody. At 2-5 minutes after injection, concentrated DTAF-tubulin staining was seen in the kinetochore fibers proximal to the kinetochores; a low concentration of DTAF-tubulin staining occurred at various sites through the remaining length of the fibers toward the pole. Kinetochore fibers in the same cell displayed different lengths (0.2 to 4 μm) of concentrated DTAF-tubulin incorporation proximal to the kinetochore, as did sister kinetochore fibers. Ten minutes after injection, the lengths of DTAF-containing chromosomal fibers were greater than expected if incorporation resulted solely from the lengthening of kinetochore microtubules due to congression movements of the chromosomes. Besides incorporation as a result of chromosome movement, two other mechanisms might explain the length of the DTAF-containing segments: (1) a poleward flux of tubulin subunits (Mitchison, 1989) or (2) capture of DTAF-containing nonkinetochore microtubules.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 24 (1993), S. 151-155 
    ISSN: 0886-1544
    Keywords: carboxyfluorescein tubulin ; cell plate formation ; confocal microscopy ; phragmoplast ; rhodamine phalloidin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The development and dynamics of the phragmoplast cytoskeleton have been analyzed in living stamen hair cells of Tradescantia. Microtubules and actin microfilaments have been identified by microinjecting either carboxyfluorescein labeled brain tubulin or rhodamine phalloidin. Examination with the confocal laser scanning microscope has permitted sequential imaging of the fluorescent cytoskeletal elements in single living cells progressing through division. Phragmoplast microtubules initially emerge through the lateral coalescence of preexisting interzone microtubules. As cytokinesis progresses, these tightly clustered microtubules shorten in length and expand centrifugally toward the cell periphery. By contrast, the phragmoplast microfilaments appear to arise de novo in late anaphase in close association with the proximal surfaces of the reconstituting daughter nuclei. The microfilaments are oriented parallel to the microtubules but conspicuously do not occupy the equatorial region where microtubules interdigitate and where the cell plate vesicles aggregate and fuse. As development proceeds the microfilaments shorten in length and expand in girth, similar to microtubules, although they remain excluded from the cell plate region. In terminal phases of cell plate formation, microtubules degrade first in the central regions of the phragmoplast and later toward the edges, whereas microfilaments break down more uniformly throughout the phragmoplast. © 1993 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...