Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 33 (1994), S. 11850-11857 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 25 (1986), S. 3944-3950 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Nutrition 20 (2000), S. 129-151 
    ISSN: 0199-9885
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Iron homeostasis is maintained by regulating its absorption: Under conditions of deficiency, assimilation is enhanced but iron uptake is otherwise limited to prevent toxicity due to overload. Iron deficiency remains the most important micronutrient deficiency worldwide, but increasing awareness of the genetic basis for iron-loading diseases points to iron overload as a major public health issue as well. Recent identification of mutant alleles causing iron uptake disorders in mice and humans provides new insights into the mechanisms involved in iron transport and its regulation. This article summarizes these discoveries and discusses their impact on our current understanding of iron transport and its regulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 135 (1994), S. 159-169 
    ISSN: 1573-4919
    Keywords: brefeldin A ; vesicle traffic ; transferrin receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The fungal metabolite brefeldin A (BFA) induces profound alterations in the morphology of intracellular organelles. Although BFA promotes the formation of extensive tubular endosomal domains, our understanding of the effects of the antibiotic on vesicle traffic events associated with endocytosis is limited. Thus, alterations in the transferrin (Tf) receptor's endocytic/recycling pathway upon treatment of human erythroleukemia K562 cells with BFA were studied as a pharmacological response. Treatment of K562 cells with BFA caused a down-regulation in the number of cell surface Tf receptors. This effect is highly reminiscent of the well-known action of phorbol 12-myristate 13-acetate (PMA) on Tf receptor traffic in K562 cells. However, our results demonstrate that these two agents down-regulate the Tf receptor via different mechanisms. The effects of BFA and PMA were additive when K562 cells were incubated with both together. Using the In/Sur method, the endocytic rate constant for Tf internalization was determined and PMA was found to greatly enhance ke, from 0.28 min−1 to 0.43 min−1, while BFA had little effect (Ke=0.20 min−1). In contrast, BFA-treatment alters the exocytic rate constant for return of internalized receptors to the cell surface, with the largest effect exerted on a ‘slow-release’, monensin-sensitive, compartment. The sum of the endocytic and exocytic kinetic data support a model in which BFA and PMA down-regulate the Tf receptor in K562 cells by mechanistically distinct actions, with BFA targeting exocytic monensin-sensitive intracellular compartments and PMA acting to exert a profound influence on elements of receptor internalization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 585-592 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The effect of metabolic inhibitors on nontransferrin bound iron transport by K562 cells was investigated. Incubation with 1 μM rotenone, 10 μM antimycin, or 0.5 mM 2,4-dinitrophenol effectively reduced ATP levels by ∼50%. Both the rate and extent of Fe+3 uptake were impaired in ATP-depleted cells, which display a reduced Vmax for uptake. K562 cell ferrireductase activity was also lowered by metabolic inhibitors, suggesting that the apparent energy requirements for transport reside in the reduction of Fe+3 to Fe+2. However, ATP depletion was found to inhibit the rate and extent of Fe+2 uptake as well. Thus, the transbilayer passage of Fe+2 and/or Fe+3 appears to be an energy-requiring process. These features possibly reflect properties of the transport mechanism associated with a recently identified K562 cell transport protein, called SFT for “Stimulator of Fe Transport,” since exogenous expression of its activity is also affected by ATP depletion. J Cell Physiol 177:585-592, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...