Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 262 (1976), S. 766-768 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In the photosphere, near sunspot minimum, the sector magnetic fields cover a range in latitude of typically ± 40 (ref. 8), while at 1 AU the comparable range in latitude has been compressed to perhaps ± 15. How is this compression in latitude accomplished? A typical magnitude of the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 297 (1982), S. 312-313 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Most previous observations of low-degree 5-min solar oscillations have been made with light integrated from the entire solar disk. Claverie et al.25 and Grec et al.1'6'7 have measured spectrum line shifts, and Deubner8 and Woodard and Hudson9 have measured radiant intensity. Such measurements are ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Large-scale averages of daily solar magnetograms have been compared by cross-correlation with the interplanetary magnetic sector pattern during a 2 1/2 yr interval. A significant correlation was found at a lag of about 4 1/2 days, with the amplitude of the correlation depending on the area included in the magnetogram averages. The highest correlation was found when an area of one quarter of the solar disk was used, which is consistent with the idea that the photospheric features which are to be associated with the interplanetary sector pattern are large scale features.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The large-scale photospheric magnetic field has been computed by allowing observed active region fields to diffuse and to be sheared by differential rotation in accordance with the Leighton (1969) magnetokinematic model of the solar cycle. The differential rotation of the computed field patterns as determined by autocorrelation curves is similar to that of the observed photospheric field, and poleward of 20° latitude both are significantly different from the differential rotation of the long-lived sunspots (Newton and Nunn, 1951) used as an input into the computations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 41 (1975), S. 461-475 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The large-scale structure of the solar magnetic field during the past five sunspot cycles (representing by implication a much longer interval of time) has been investigated using the polarity (toward or away from the Sun) of the interplanetary magnetic field as inferred from polar geomagnetic observations. The polarity of the interplanetary magnetic field has previously been shown to be closely related to the polarity (into or out of the Sun) of the large-scale solar magnetic field. It appears that a solar structure with four sectors per rotation persisted through the past five sunspot cycles with a synodic rotation period near 27.0 days, and a small relative westward drift during the first half of each sunspot cycle and a relative eastward drift during the second half of each cycle. Superposed on this four-sector structure there is another structure with inward field polarity, a width in solar longitude of about 100° and a synodic rotation period of about 28 to 29 days. This 28.5 day structure is usually most prominent during a few years near sunspot maximum. Some preliminary comparisons of these observed solar structures with theoretical considerations are given.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The mean solar magnetic field as measured in integrated light has been observed since 1968. Since 1970 it has been observed both at Hale Observatories and at the Crimean Astrophysical Observatory. The observing procedures at both observatories and their implications for mean field measurements are discussed. A comparison of the two sets of daily observations shows that similar results are obtained at both observatories. A comparison of the mean field with the interplanetary magnetic polarity shows that the IMF sector structure has the same pattern as the mean field polarity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 49 (1976), S. 177-185 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A Hale solar sector boundary is defined as the half (northern hemisphere or southern hemisphere) of a sector boundary in which the change of sector magnetic field polarity is the same as the change of polarity from a preceding spot to a following spot. Above a Hale sector boundary the green corona has maximum brightness, while above a non-Hale boundary the green corona has a minimum brightness. The Hale portion of a photospheric sector boundary tends to have maximum magnetic field strength, while the non-Hale portion has minimum field strength.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 82 (1983), S. 37-42 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The solar oscillation with period near 160 min is found to be unique in a spectrum computed over the range of periods from about 71 to 278 min. Our best estimate of the period is 160.0095 ± 0.001 min, which is different from 160 min (1/9 of a day) by a highly significant amount. The width of the peak is approximately equal to the limiting resolution that can be obtained from an observation lasting 6 years, which suggests that the damping time of the oscillations is considerably longer than 6 years. A suggestion that this peak might be the result of a beating phenomenon between the five minute data averages and a solar oscillation with period near five minutes is shown to be incorrect by recomputing a portion of the spectrum using 15 s data averages.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 5 (1968), S. 240-256 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The interplanetary magnetic field has been mapped between 0.4 and 1.2 AU in the ecliptic plane, extrapolating from satellite measurements at 1 AU. The structure within sectors and the evolution of sectors are discussed. The development of a solar active region appears to produce magnetic loops in the interplanetary medium that result in the formation of a new sector.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A solar telescope has been built at Stanford University to study the organization and evolution of large-scale solar magnetic fields and velocities. The observations are made using a Babcock-type magnetograph which is connected to a 22.9 m vertical Littrow spectrograph. Sun-as-a-star integrated light measurements of the mean solar magnetic field have been made daily since May 1975. The typical mean field magnitude has been about 0.15 G with typical measurement error less than 0.05 G. The mean field polarity pattern is essentially identical to the interplanetary magnetic field sector structure (see near the Earth with a 4 day lag). The differences in the observed structures can be understood in terms of a ‘warped current sheet’ model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...