Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Years
Language
  • 1
    Publication Date: 2020-03-20
    Description: Well-mixed stochastic chemical kinetics are properly modelled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows to express various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-20
    Description: Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-22
    Description: The reaction-diffusion master equation (RDME) is a lattice-based stochastic model for spatially resolved cellular processes. It is often interpreted as an approximation to spatially continuous reaction-diffusion models, which, in the limit of an infinitely large population, may be described by means of reaction-diffusion partial differential equations (RDPDEs). Analyzing and understanding the relation between different mathematical models for reaction-diffusion dynamics is a research topic of steady interest. In this work, we explore a route to the hydrodynamic limit of the RDME which uses gradient structures. Specifically, we elaborate on a method introduced in [J. Maas, A. Mielke: Modeling of chemical reactions systems with detailed balance using gradient structures. J. Stat. Phys. (181), 2257-2303 (2020)] in the context of well-mixed reaction networks by showing that, once it is complemented with an appropriate limit procedure, it can be applied to spatially extended systems with diffusion. Under the assumption of detailed balance, we write down a gradient structure for the RDME and use the method to produce a gradient structure for its hydrodynamic limit, namely, for the corresponding RDPDE.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-20
    Description: This paper investigates the criterion of long-term average costs for a Markov decision process (MDP) which is not permanently observable. Each observation of the process produces a fixed amount of information costs which enter the considered performance criterion and preclude from arbitrarily frequent state testing. Choosing the rare observation times is part of the control procedure. In contrast to the theory of partially observable Markov decision processes, we consider an arbitrary continuous-time Markov process on a finite state space without further restrictions on the dynamics or the type of interaction. Based on the original Markov control theory, we redefine the control model and the average cost criterion for the setting of information costs. We analyze the constant of average costs for the case of ergodic dynamics and present an optimality equation which characterizes the optimal choice of control actions and observation times. For this purpose, we construct an equivalent freely observable MDP and translate the well-known results from the original theory to the new setting.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-03
    Language: English
    Type: book , doc-type:book
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-08
    Description: Agent based models (ABMs) are a useful tool for modeling spatio-temporal population dynamics, where many details can be included in the model description. Their computational cost though is very high and for stochastic ABMs a lot of individual simulations are required to sample quantities of interest. Especially, large numbers of agents render the sampling infeasible. Model reduction to a metapopulation model leads to a significant gain in computational efficiency, while preserving important dynamical properties. Based on a precise mathematical description of spatio-temporal ABMs, we present two different metapopulation approaches (stochastic and piecewise deterministic) and discuss the approximation steps between the different models within this framework. Especially, we show how the stochastic metapopulation model results from a Galerkin projection of the underlying ABM onto a finite-dimensional ansatz space. Finally, we utilize our modeling framework to provide a conceptual model for the spreading of COVID-19 that can be scaled to real-world scenarios.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2022-07-05
    Description: This work explores a synchronization-like phenomenon induced by common noise for continuous-time Markov jump processes given by chemical reaction networks. A corresponding random dynamical system is formulated in a two-step procedure, at first for the states of the embedded discrete-time Markov chain and then for the augmented Markov chain including also random jump times. We uncover a time-shifted synchronization in the sense that -- after some initial waiting time -- one trajectory exactly replicates another one with a certain time delay. Whether or not such a synchronization behaviour occurs depends on the combination of the initial states. We prove this partial time-shifted synchronization for the special setting of a birth-death process by analyzing the corresponding two-point motion of the embedded Markov chain and determine the structure of the associated random attractor. In this context, we also provide general results on existence and form of random attractors for discrete-time, discrete-space random dynamical systems.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...