Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 22 (1950), S. 1516-1518 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 21 (1949), S. 596-597 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 67 (1989), S. 843-846 
    ISSN: 1432-1440
    Keywords: Sodium glucose cotransport ; Small intestine ; Proximal tubule ; Cloning ; Expression ; Xenopus oocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Recent success in expression cloning has revealed the primary structure of the Na+/glucose cotransporter from rabbit small intestine, and this has subsequently led to the cloning of the Na+/glucose cotransporters from human small intestine and human kidney. Close homology is evident between the rabbit and human intestinal Na+/glucose cotransporters at the DNA level, and the predicted amino acid and secondary structure levels. The Na+/glucose cotransporter amino acid sequence from human kidney is 57% identical with that from human small intestine. Significant homology also exists between these Na+/glucose cotransporters and theE. coli Na+/proline cotransporter (putP). The rabbit intestinal Na+/glucose cotransporter has 11 potential membrane spanning regions and 2 hydrophilic regions containing highly charged residues. The amino acid sequence shows two potential N-glycosylation sites (N-X-T/S). Using an in vitro translation approach we were able to determine that only one of these (Asn 248) is glycosylated. Expression experiments withXenopus oocytes using the N-glycosylation inhibitor tunicamycin indicate that glycosylation of Asn 248 is required for functional expression of the transporter. The N-X-T/S sequence at Asn 248 is conserved in the human intestinal and the human renal Na+/glucose cotransporter. Chromosomal localization studies map the human intestinal Na+/glucose cotransporter gene (SGLT1) to the q11.2→qter region of chromosome 22 and the human renal Na+/glucose cotransporter gene (SGLT2) to the q-arm of chromosome 16. Thus the intestinal and renal Na+/glucose cotransporters are encoded by different genes located on different chromosomes. This is consistent with the observation that inherited defects of the transporters, intestinal glucose/galactose malabsorption and renal glycosuria, do not appear to be genetically linked.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Mathematische Annalen 183 (1969), S. 250-253 
    ISSN: 1432-1807
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1424
    Keywords: Na+/myo ; inositol cotransport ; Na+/glucose cotransport ; Kinetics ; Electrophysiology ; Xenopus oocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The two-microelectrode voltage clamp technique was used to examine the kinetics and substrate specificity of the cloned renal Na+/myo-inositol cotransporter (SMIT) expressed in Xenopus oocytes. The steady-state myo-inositol-induced current was measured as a function of the applied membrane potential (V m ), the external myo-inositol concentration and the external Na+ concentration, yielding the kinetic parameters: K 0.5 MI , K 0.5 Na , and the Hill coefficient n. At 100 mM NaCl, K 0.5 MI was about 50 μm and was independent of V m . At 0.5 mm myo-inositol, K 0.5 Na ranged from 76 mm at V m =−50 mV to 40 mm at V m =−150 mV. n was voltage independent with a value of 1.9±0.2, suggesting that two Na+ ions are transported per molecule of myo-inositol. Phlorizin was an inhibitor with a voltage-dependent apparent K I of 64 μm at V m =−50 mV and 130 μm at V m = −150 mV. To examine sugar specificity, sugar-induced steady-state currents (at V m =−150 mV) were recorded for a series of sugars, each at an external concentration of 50 mm. The substrate selectivity series was myo-inositol, scyllo-inositol 〉 l-fucose 〉 l-xylose 〉 l-glucose, d-glucose, α-methyl-d-glucopyranoside 〉 d-galactose, d-fucose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose 〉 d-xylose. For comparison, oocytes were injected with cRNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) and sugar-induced steady-state currents (at V m =−150 mV) were measured. For oocytes expressing SGLT1, the sugar selectivity was: d-glucose, α-methyl-d-glucopyranoside, d-galactose, d-fucose, 3-O-methyl-d-glucose 〉 d-xylose, l-xylose, 2-deoxy-d-glucose 〉 myo-inositol, l-glucose, l-fucose. The ability of SMIT to transport glucose and SGLT1 to transport myo-inositol was independently confirmed by monitoring the Na+-dependent uptake of 3H-d-glucose and 3H-myo-inositol, respectively. In common with SGLT1, SMIT gave a relaxation current in the presence of 100 mm Na+ that was abolished by phlorizin (0.5 mm). This transient current decayed with a voltage-sensitive time constant between 10 and 14 msec. The presteady-state current is apparently due to the reorientation of the cotransporter protein in the membrane in response to a change in V m . The kinetics of SMIT is accounted for by an ordered six-state nonrapid equilibrium model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1424
    Keywords: Freeze-fracture ; Plasma membranes ; Heterologous expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The Xenopus laevis oocyte is widely used to express exogenous channels and transporters and is well suited for functional measurements including currents, electrolyte and nonelectrolyte fluxes, water permeability and even enzymatic activity. It is difficult, however, to transform functional measurements recorded in whole oocytes into the capacity of a single channel or transporter because their number often cannot be estimated accurately. We describe here a method of estimating the number of exogenously expressed channels and transporters inserted in the plasma membrane of oocytes. The method is based on the facts that the P (protoplasmic) face in water-injected control oocytes exhibit an extremely low density of endogenous particles (212±48 particles/μm2, mean, sd) and that exogenously expressed channels and transporters increased the density of particles (up to 5,000/μm2) only on the P face. The utility and generality of the method were demonstrated by estimating the “gating charge” per particle of the Na+/ glucose cotransporter (SGLT1) and a nonconducting mutant of the Shaker K+ channel proteins, and the single molecule water permeability of CHIP (Channel-like Intramembrane Protein) and MIP (Major Intrinsic Protein). We estimated a “gating charge” of ∼3.5 electronic charges for SGLT1 and ∼9 for the mutant Shaker K+ channel from the ratio of Q max to density of particles measured on the same oocytes. The “gating charges” were 3-fold larger than the “effective valences” calculated by fitting a Boltzmann equation to the same charge transfer data suggesting that the charge movement in the channel and cotransporter occur in several steps. Single molecule water permeabilities (p f s) of 1.4 × 10−14 cm3/ sec for CHIP and of 1.5 × 10−16 cm3/sec for MIP were estimated from the ratio of the whole-oocyte water permeability (P f ) to the density of particles. Therefore, MIP is a water transporter in oocytes, albeit ∼100-fold less effective than CHIP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 142 (1994), S. 161-170 
    ISSN: 1432-1424
    Keywords: Na+/glucose cotransporter ; Xenopus oocytes ; Phenylglucosides ; Voltage clamp ; Kinetics ; Molecular modeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Phenylglucosides are transported by the intestinal Na+/glucose cotransporter (SGLT1) and phlorizin, the classical competitive inhibitor of SGLT1, is also a phenylglucoside. To investigate the structural requirements for binding of substrates to SGLT1, we have studied the interactions between phenylglucosides and the cotransporter expressed in Xenopus oocytes using tracer uptake and electrophysiological methods. Some phenylglucosides inhibited the Na+-dependent uptake of 14C-α-methyl-d-glucopyranoside (αMDG) with apparent K is in the range 0.1 to 20 mm, while others had no effect. Electrophysiological experiments indicated that phenylglucosides can act either as: (1) transported substrates, e.g., arbutin; (2) nontransported inhibitors, e.g., glucosylphenyl-isothiocyanate; or (3) noninteracting sugars, e.g., salicin. The transported substrates (glucose, arbutin, phenylglucoside and helicin) induced different maximal currents, and computer simulations showed that this may be explained by a difference in the translocation rates of the sugar and Na+-loaded transporter. Computational chemistry indicated that all these β-phenylglucosides have similar 3-D structures. Analysis showed that among the side chains in the para position of the phenyl ring the -OH group (arbutin) facilitates transport, but the-NCS (glucosylphenyl-isothiocyanate) inhibits transport. In the ortho position, -CH2OH (salicin) prevents interaction, but the aldehyde (helicin) permits the molecule to be transported. Studies such as these may help to understand the geometry and nature of glucoside binding to SGLT1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Preparations of intestinal epithelial cell basal lateral plasma membranes were analyzed with free flow electrophoresis and density pertubation with digitonin. The initial basal lateral membrane preparations were obtained by equilibrium density gradient centrifugation after two different schemes of homogenization and differential sedimentation (A.K. Mircheff, C.H. van Os, and E.M. Wright. 1978.Membr. Biochem. 1: 177, and A.K. Mircheff, S.D. Hanna, M.W. Walling, and E.M. Wright. 1979.Prep. Biochem. 9:33. In these preparations, Na,K-ATPase, a marker for the basal lateral mambrane, was purified 16- to 18-fold over the initial homogenate. The preparations were also enriched in NADPH-cytochromec reductase, alkaline phosphatase, acid phosphatase, and galactosylstransferase. Both free-flow electrophoresis, which separates on the basis of surface charge, and density perturbation with digitonin, which depends on a specific interaction of digitonin with cholesterol-rich membranes, resolved the preparation into three populations of particles. The major population, which represented basal lateral membranes purified 20- to 32-fold with respect to the initial homogenate, contained Na,K-ATPase, alkaline phosphatase, adenylate cyclase, and acid phosphatase. A second population was defined by its content of NADPH-cytochromec reductase, and the third was defined by its content of galactosyltransferase. Guanylate cyclase appeared to be partitioned between the Na,K-ATPase-rich and NADPH-cytochromec reductase-rich populations. Galactosyltransferase is also present in fractions which contain the Na,K-ATPase-rich membranes, but the present data cannot exclude the possibility of spillovers by the adjacent, galactosyltransferase-rich population. This work emphasize the importance of multiple, physical criteria for purity in the isolation of subcellular components.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 81 (1984), S. 159-170 
    ISSN: 1432-1424
    Keywords: renal brush border membranes ; carboxylic acid transport ; glucose transport ; Na-coupled cotransport ; histidyl, sulfhydryl, tyrosyl and tryptophanyl residues
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Mono-, dicarboxylic acid-, andd-glucose transport were measured in brush border vesicles from renal cortex after treatment with reagents known to modify terminal amino, lysyl, ɛ-amino, guanidino, serine/threonine, histidyl, tyrosyl, tryptophanyl and carboxylic residues. All three sodium-coupled cotransport systems proved to possess sulfhydryl (and maybe tryptophanyl sulfhydryl, disulfide, thioether and tyrosyl) residues but not at the substrate site or at the allosteric cavity for the Na coion. Histidyl groups seem to be located in the active site of the dicarboxylic transporter in that the simultaneous presence of Na and succinate protects the transporter against the histidyl specific reagent diethylpyrocarbonate. Lithium, which specifically competes for sodium sites in the dicarboxylic acid transporter, substantially blocked the protective effect of Na and succinate. Hydroxylamine specifically reversed the covalent binding of diethylpyrocarbonate to the succinate binding site. The pH dependence of the Na/succinate cotransport is consistent with an involvement of histidyl and sulfhydryl residues. We conclude that a histidyl residue is at, or is close to, the active site of the dicarboxylate transporter in renal brush border membranes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0649
    Keywords: 42.50
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...