Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 6846-6848 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Epitaxial Tl2Ba2CaCu2O8 superconducting films have been successfully grown on the dielectric Sr2(AlTa)O6 (SAT) buffer layers. X-ray diffraction data showed that the films were highly c-axis oriented with a rocking curve full width half maximum as narrow as 0.3°. The films also had an excellent in-plane epitaxy with Tl2Ba2CaCu2O8[100] aligned with SAT[100] and MgO[100] of the substrate. The zero resistance temperature Tc of the superconducting films ranged from 95 to 103 K and the transport critical current density Jc in zero field was 3×105 A/cm2 at 77 K. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In order to build high-temperature superconductor (HTS) multichip modules (MCMs), it is necessary to grow several epitaxial layers of YBCO that are separated by thick dielectric layers without seriously affecting the quality of the YBCO layers. In this work, we have successfully fabricated YBCO/YSZ/SiO2/YSZ/YBCO structures on single-crystal LaAlO3 substrates using a combination of pulsed laser deposition for the YBCO layers and ion-beam-assisted rf sputtering to obtain biaxially aligned YSZ intermediate layers. The bottom YBCO layer had a Tc∼89 K, Jc∼7.2×105 A/cm2 at 77 K, whereas the top YBCO layer had a Tc∼86 K, Jc∼6×105 A/cm2 at 77 K. The magnetic field and temperature dependence of Jc for the YBCO films in the multilayer have been obtained. The results for each of the YBCO layers within the YBCO/YSZ/SiO2/YSZ/YBCO structure are quite similar to those for a good quality single-layer YBCO film. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 2361-2363 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: n-type semiconducting InP is changed into p-type semiconducting by short time annealing at 700 °C. Further annealing for a longer time leads to a second conduction-type conversion changing the material back to n type again but with a much higher resistivity. These conduction conversions indicate the formation of both acceptor and donor defects and the progressive variation of their relative concentrations during annealing. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 1082-1086 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The electroluminescent properties of three different device structures (A:ITO/SiO2/Alq3/SiO2/Al, B:ITO/Alq3/SiO2/Al, and C:ITO/SiO2/Alq3/Al) based on the tris-(8-hydroxyquinoline) aluminum (Alq3) were investigated. A blue electroluminescence at 457 nm was obtained from device (A) and (B), and the green emission at 518 nm was obtained from device (C). It is generally agreed that the green emission originates from the recombination of the singlet excitons. The blue emission, here, is attributed to the direct transitions between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital of Alq3. This is due to the electric field-induced excitons dissociation and the space charge accumulation at the interface. The high internal electric field enhances the dissociation of neutral singlet excitations into LUMO states and inhibits the formation of the singlet excitons, therefore enhances the probability for direct interband transitions of the relaxed carriers. The intensity of the blue emission is dependent on the operating frequency. This indicates that space charge accumulation time and effective internal electric field are responsible for the blue emission intensity. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 951-955 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: As-grown undoped n-type semiconducting and annealed undoped semi-insulating (SI) liquid encapsulated Czochralski (LEC) InP has been studied by temperature dependent Hall measurement, photoluminescence spectroscopy, infrared absorption, and photocurrent spectroscopy. P-type conduction SI InP can frequently be obtained by annealing undoped LEC InP. This is caused by a high concentration of thermally induced native acceptor defects. In some cases, it can be shown that the thermally induced n-type SI property of undoped LEC InP is caused by a midgap donor compensating for the net shallow acceptors. The midgap donor is proposed to be a phosphorus antisite related defect. Traps in annealed SI InP have been detected by photocurrent spectroscopy and have been compared with reported results. The mechanisms of defect formation are discussed. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 152-154 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It has recently been suggested that the thin degenerate layer found at the GaN/sapphire interface results from a high concentration of stacking faults. The studies of this letter, however, show that this is not the most likely explanation for the presence of such a degenerate layer. Using x-ray energy-dispersive spectroscopy and secondary ion-mass spectroscopy, profile distributions of elements Ga, N, O, C, and Al, near the interface, have been obtained. The distributions reveal very high O and Al concentrations in the GaN film within 0.2 μm from the interface, together with a material depletion of Ga and N. Such conditions strongly favor n+ conductivity in this interfacial region because not only are N-vacancy and N-site O donors present, but Al incorporated on the Ga sublattice reduces the concentration of compensating Ga-vacancy acceptors. The two-layer (film plus interface) conduction has been modeled, and the effect of conduction in the GaN film thus isolated. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 1275-1277 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The concentration of hydrogen–indium vacancy complex VInH4 in liquid encapsulated Czochralski undoped and Fe-doped n-type InP has been studied by low-temperature infrared absorption spectroscopy. The VInH4 complex is found to be a dominant intrinsic shallow donor defect with concentrations up to ∼1016 cm−3 in as-grown liquid encapsulated Czochralski InP. The concentration of the VInH4 complex is found to increase with the compensation ratio in good agreement with the proposed defect formation model of Walukiewicz [W. Walukiewicz, Phys. Rev. B 37, 4760 (1998); Appl. Phys. Lett. 54, 2094 (1989)], which predicts a Fermi-level-dependent concentration of amphoteric defects. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 2126-2128 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Fourier transform infrared spectroscopy measurements have been carried out on liquid-encapsulated Czochralski-grown undoped InP wafers, which reproducibly become semi-insulating upon annealing in an ambient of phosphorus at 800–900 °C. The measurements reveal a high concentration of hydrogen complexes in the form VInH4 existing in the material before annealing in agreement with recent experimental studies. It is argued that the dominant and essential process producing the semi-insulating behavior is the compensation produced by an EL2-like deep donor phosphorus antisite defect, which is formed by the dissociation of the hydrogen complexes during the process of annealing. The deep donor compensates acceptors, the majority of which are shallow residual acceptor impurities and deep hydrogen associated VIn and isolated VIn levels, produced at the first stage of the dissociation of the VInH4 complex. The high concentration of indium vacancies produced by the dissociation are the precursor of the EL2-like phosphorus antisite. These results show the importance of hydrogen on the electrical properties of InP and indicate that this largely results from low formation energy of the complex VInH4 in comparison with that of an isolated VIn. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 60 (1992), S. 3063-3065 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thin (80–200 A(ring)) silicon dioxide (SiO2) films have been deposited by low pressure rapid thermal chemical vapor deposition (RTCVD), using silane (SiH4) and nitrous oxide (N2O) as the reactive gases for the first time. A deposition rate of 55 A(ring)/min has been achieved at 800 °C with a SiH4/N2O flow rate ratio of 2%. Auger electron spectroscopy (AES) and Rutherford back scattering spectroscopy (RBS) have shown a uniform and stoichiometric composition throughout the deposited oxide films. Electrical characterization of the films have shown an average catastrophic breakdown field of 13 MV/cm and a midgap interface trap density (Dit) of equal to or less than 5×1010 eV−1 cm−2. The results suggest that the deposited RTCVD SiO2 films using SiH4-N2O gas system may have the potential to be used as the gate dielectric in future low-temperature metal oxide semiconductor (MOS) device processes for ultralarge scale integration (ULSI).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 63 (1993), S. 3619-3621 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thin silicon oxynitride (Si-O-N) films have been deposited using low-pressure rapid thermal chemical vapor deposition (RTCVD) with silane (SiH4), nitrous oxide (N2O), and ammonia (NH3) as the reactive gases. Metal-oxide-semiconductor transistor transconductance measurements showed decreasing peak gm values but improved high field degradation characteristics. This is consistent with previous work on thermally nitrided oxides and suggests that the films are perhaps under tensile stress. Hot carrier stress at maximum substrate current was performed with the Si-O-N films displaying larger threshold voltage shifts when compared to furnace SiO2 indicating the possible existence of hydrogen related traps.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...