Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Keywords Diabetes mellitus ; atherosclerosis ; vascular HGF system ; vascular remodelling ; apoptosis.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Injury of endothelial cells (EC) has been postulated as the initial trigger of the progression of atherosclerosis in patients with diabetes mellitus. We previously reported that decrease in a novel endothelium-specific growth factor, hepatocyte growth factor (HGF), by high d-glucose might be a trigger of endothelial injury. However, the physiological role of the local vascular HGF system has not yet been clarified. To investigate the role of HGF in endothelial injury, we initially examined the effects of HGF on endothelial injury induced by serum deprivation. Decrease in EC number by serum deprivation was significantly attenuated by addition of HGF as well as recombinant basic fibroblast growth factor, whereas vascular endothelial growth factor showed no effect. Apoptotic changes in EC induced by serum deprivation were also significantly attenuated by addition of HGF (p 〈 0.01). Given the protective action of HGF, we next studied the physiological role of local HGF production in endothelial regulation. We focused on the protective actions of prostaglandin (PG) I2, PGE and a phosphodiesterase type 3 inhibitor (cilostazol) on endothelial injury by high glucose, since these agents are widely used in the treatment of peripheral arterial disease which is frequently observed in diabetic patients. Treatment of human aortic EC with PGE1, PGE2, and a PGI2 analogue (beraprost sodium) as well as cilostazol stimulated EC growth. HGF concentration in conditioned medium from EC treated with PGE1, PGE2 or PGI2 analogue as well as cilostazol was significantly higher than that with vehicle (p 〈 0.01). Interestingly, treatment with PGI2 analogue or cilostazol attenuated high d-glucose-induced EC death, which was abolished by neutralizing anti-HGF antibody. Moreover, decreased local HGF production by high d-glucose was also significantly attenuated by PGI2 analogue or cilostazol. Finally, we tested the effects of PGE, PGI2 analogue and cilostazol on local HGF production in human aortic vascular smooth muscle cells (VSMC). Although high d-glucose treatment resulted in a significant increase in VSMC number, PGI2 analogue and/or cilostazol treatment had no effects on VSMC growth. However, the decrease in local HGF production by high d-glucose was significantly attenuated by addition of PGI2 analogue or cilostazol. Overall, this study demonstrated that treatment with PGE, PGI2 analogue or cilostazol prevented aortic EC death induced by high d-glucose, probably through the activation of local HGF production. Increased local vascular HGF production by prostaglandins and cilostazol may prevent endothelial injury, potentially resulting in the improvement of peripheral arterial disease. [Diabetologia (1997) 40: 1053–1061]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1619-1560
    Keywords: Mental stress ; Sympathetic nervous system ; Spectral analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Spectral analysis of heart rate fluctuation was evaluated before and after administration of carteolol, a non-selectiveβ-adrenoceptor-blocker, to investigate the neural regulatory mechanisms underlying the haemodynamic changes induced by mental stress. Mental stress increased blood pressure and heart rate, with an increased low frequency band, and low frequency/high frequency ratio of the power spectral analysis which are indices of sympathetic activity. Carteolol did not change basal and pre-mental stress measurements of blood pressure, heart rate and spectral density. However, carteolol altered the response to mental stress with a decrease in spectral density of the low frequency band and low frequency/high frequency ratio, and an increase in the high frequency component. These results confirm that mental stress elevates blood pressure by activating the sympathetic nervous system, and suggest that blockade of theβ-adrenoceptor attenuates the pressor response by preventing the autonomic responses to mental stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...