Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 64 (1988), S. 2973-2980 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The diffusion of several elements implanted into layers of CoSi2 with a nominal thickness of 800 nm, grown by metal-silicon reaction, has been studied by secondary ion mass spectroscopy. Boron has by far the highest mobility. It is totally homogenized by heat treatment for 0.5 h at 800 °C; it displays evidence of grain-boundary diffusion at 400 °C and of lattice diffusion at 450 °C. The next group of elements, gallium, phosphorus, and germanium (used as a tracer in lieu of a silicon isotope) diffuse distinctly less rapidly, and remain nonhomogenized after annealing at 800 °C. The lattice diffusion of arsenic and antimony is not detectable (by the means presently used), even after heat treatment at the same relatively high temperature. Low-temperature effects, and effects far away from the implanted region, are dominated by grain-boundary diffusion. The lattice diffusion increases from boron to phosphorus and germanium, with activation energies determined to be 2.0 and 2.7 eV for boron and phosphorus, respectively. The results are discussed by comparison with those previously obtained with TiSi2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 6409-6415 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The formation of C54 TiSi2 using Ti–Nb alloys deposited on polycrystalline Si substrates was studied by means of in situ x-ray diffraction and resistance measurements during temperature ramping. Alloys with Nb contents ranging from 0 to 13.6 at. % were used. The formation temperature of C54 TiSi2 was reduced in the presence of Nb. However, the addition of Nb in Ti did not cause fundamental changes in the evolution of resistance versus temperature. This latter observation suggests that the mechanism for the formation of C54 TiSi2 remained the same in spite of the enhancement effect. For alloys with up to 8 at. % of Nb, the C49 TiSi2 phase formed first, as with pure Ti. When annealing the alloy with 13.6 at. % Nb, neither C49 TiSi2 nor C54 were found in the usual temperature ranges, instead, C40 (Nb,Ti)Si2 was observed. This phase transformed to C54 (Nb,Ti)Si2 above 950 °C. The apparent activation energy associated with the formation of C54 TiSi2 was obtained by annealing the samples at four different ramp rates from 3 to 27 K/s; it decreased continuously from 3.8 to 2.5 eV with increasing Nb content from 0 to 8 at. %. The apparent activation energy for the formation of C40 (Nb,Ti)Si2 was found to be 2.6 eV. The possible physical meaning, or lack thereof, of the high activation energies derived from experimental measurements is extensively discussed. A qualitative model is proposed whereby nucleation would be rate controlling in pure TiSi2, and interface motion in samples with 8 at. % Nb. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 54 (1989), S. 228-230 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The reaction of Ti with pure Ge and several Ge-Si alloys has been investigated with the double aim of understanding the reaction with Ge and of throwing some light on the still vexing problem of the Ti-Si reaction. With pure Ge one observes first of all the formation of Ti6Ge5 until complete consumption of the Ti is present. This is followed by the clearly identifiable nucleation of TiGe2, initially forming islands that grow laterally. With a 50-50 (at. %) alloy of Si and Ge, one still observes distinct growth steps, but there is overlap between the growth of the initial phase, and the nucleation and growth of Ti(Ge,Si)2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 4036-4040 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The dominant diffusion species in the formation of Al2Cu, Mg2Cu, and Mg2Ni have been determined. These compounds, rich in the lower melting point elements, are the first phases formed in metal/metal binary reactions. It is quite surprising to find that in all three systems, the minority elements, i.e., Cu or Ni, are the dominant diffusing species. This is in marked difference with results obtained in many metal/metal and metal/Si systems, where the dominant diffusion species are usually the majority elements in the initially formed compounds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 55 (1989), S. 1804-1804 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 4087-4095 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The use of "Kissinger'' plots to analyze in situ resistance monitoring of thin-film reactions during heating at a constant rate is widely accepted. One obtains the activation energy for diffusion, at least in the case of diffusion-controlled reactions. The aim of this article is to extend the analysis one step further and show that, provided that the thickness of the layers formed is known, the same experimental and analytical techniques may yield the pre-exponential growth factor. The validity of the procedure is demonstrated by comparing the results thus obtained with data from the literature derived by conventional analysis of compound growth during isothermal annealing. Such comparisons have been made for Co2Si, CoSi, CoSi2, Pt2Si, PtSi, Ni2Si, and NiSi formation on undoped polycrystalline Si and single-crystal Si on sapphire substrates with ramp rates ranging from 10−2 °C/s to 102 °C/s. Measurements used both conventional furnace and rapid thermal annealing. In the past, the common practice has been to use the Kissinger method regardless of the sequence of growing phases. However, for phases other than the first one to be formed the direct Kissinger analysis needs to be modified. In the present cases the results obtained by means of an appropriately corrected procedure are not significantly different; that may not always be true. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 2660-2666 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The transformation of C49 phase TiSi2 to the low resistivity C54 phase is necessary for many microelectronic applications. Here, we report on attempts to decrease this transformation temperature by low-energy ion bombardment at elevated temperature. Ion irradiation was performed using a broad beam Kaufman ion source operated in N2 or Ar gas between 0.1 and 2 keV beam energy, with ion doses ranging from 2.0×1016 to 1.9×1018 ions/cm2, and sample temperatures from 480 °C to 735 °C. For comparison, room-temperature Ar+ implantation at higher energy (105–210 keV) was performed with a dose of 1016 ions/cm2 with projected ranges within and beyond the TiSi2 layer thickness. Resistivity measurements as a function of temperature, x-ray diffraction, and Rutherford backscattering spectrometry were used to determine the composition and phases. Results show that low-energy ion bombardment does not promote the C49-C54 transformation at the temperatures studied, while ion implantation actually raises the temperature for the transformation. In addition, bombardment of C54 TiSi2 does not cause it to revert to the C49 phase, indicating that both phases appear to be surprisingly stable under ion bombardment. Simulations of defect production using the trim code indicate the formation of a higher number of displaced atoms than are usually required to initiate a transformation. We conclude that the defects introduced into C49 TiSi2 by ion bombardment at energies up to 2 keV are either not sufficient to nucleate the C54 phase or they are annealed out too quickly at the temperature needed for C54 phase growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Tungsten was deposited from a gas mixture of hydrogen and tungsten hexafluoride onto a polycrystalline silicon gate structure in a chemical vapor deposition system. During the deposition process fluorine was also deposited as an undesired impurity. In order to remove the fluorine, heat treatments in the temperature range 550–1050 °C were performed in a hydrogen atmosphere. By this treatment it is possible to form volatile hydrofluoric acid and hence remove fluorine from the structure. Nuclear-resonance-broadening technique and secondary ion mass spectrometry were used for the analysis of fluorine. Fluorine was detected in all the samples except for the sample heat treated at 1050 °C. Moreover, etching of the polycrystalline silicon was observed. The gettering of fluorine, the etching of silicon and the observed formation of tungsten disilicide at 650 °C are discussed with respect to conceivable mechanisms. A thermodynamic study supporting the interpretations is also included.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 68 (1990), S. 5133-5139 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The mechanism of atomic transport inside the silicide during thermal oxidation of silicide layers on Si substrates has been analyzed by means of inert gas markers implanted in TiSi2, Mn11Si19, FeSi2, and NbSi2. Oxidation was carried out in dry oxygen. The marker displacement reveals that the growth of metal-free SiO2 over the first three of these compounds occurs via the reverse motion of metal atoms, from the silicide/oxide to the silicon/silicide interface, rather than through the direct diffusion of Si atoms from the substrate to the oxide. Moreover, analysis of the marker position indicates that the total amount of Si between the marker and the free surface decreases during oxidation, as had been previously observed in the oxidation of NiSi2, CoSi2, and CrSi2. Although this could occur via the formation and evaporation of SiO, it is believed that the loss of Si is due to the motion of Si atoms, also in the "reverse'' direction as for the metal atoms, across the silicide layer. The experiment conducted with NbSi2 shows that this silicide oxidizes via the direct motion of Si from the substrate to the oxide as anticipated. With TiSi2 the initial state of oxidation occurs as described, but the experimental observations imply that thick oxide layers grow via the direct motion of Si from the substrate to the oxide.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 65 (1989), S. 567-574 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Oxygen behavior during the formation of CrSi2 and TiSi2 was studied using 16O(α,α)16O resonant scattering and mass dispersive recoil detection analysis. The Ti and Cr films were deposited by e-beam evaporation in a cryopumped system. The oxygen content in the films was varied by evaporating at different pressures. The silicide films were formed by solid-solid reaction of the metal layers with the silicon substrate, and the annealing conditions were such that both partly and fully reacted silicides were obtained. The extent of the silicide formation was monitored by backscattering spectrometry. In the case of CrSi2, oxygen was found to be uniformly distributed throughout the silicide layer after annealing. For the Ti/TiSi2 system, however, oxygen seems to have preferentially remained in the Ti layer during the silicide growth, and its final distribution was confined in a region in the silicide close to the surface. It was also observed in the latter case that silicon diffused to the surface at the initial stage of annealing. A model based on the Nernst–Einstein equation is proposed to provide a general explanation for the oxygen behavior in metal/silicon systems. In addition, it was shown that oxygen which was initially in the form of metal oxides and in solid solution had been transformed into SiO2 after the silicide formation. Oxygen loss is observed for all samples, and increases with the extent of annealing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...