Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 28 (1995), S. 7996-8005 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 5781-5791 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Solutions of highly charged polyelectrolyte chains are described by a model that introduces ion condensation as a random charge along the polymer. The degree of condensation is obtained by solving the Poisson–Boltzmann equation with cylindrical geometry. Short range electrostatic attractions between the monomers via the condensed counterions of high enough valency lead to reversible chain precipitation. The range of polymer concentration over which salt-free solutions are unstable is determined, as well as the miscibility of the chains when salt is added. Redissolution at high salt concentration is due to a screening of the short range electrostatic attractions. Precipitation of chains in mixtures of movalent and multivalent salts is also studied. We find the range of salt concentration where chains precipitate. The model explains the experimental results on the precipitation of sodium and lanthanum polystyrene sulfonate solutions in presence of multivalent salts [LaCl3 and Th(NO3)4]. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 507-517 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We study binary polyelectrolytes in the melt state and in concentrated solutions using the random phase approximation (RPA). We compute the thermodynamics and electrostatics of chemically linked polyelectrolytes chains into block copolymer molecules (copolyelectrolytes). Polyelectrolytes blends and copolyelectrolytes in the presence of free ions have Debye–Hückel-type effective monomer–monomer interactions, even when the polymer chains are not charged. Copolyelectrolyte of chemically linked chains of opposite charge in the absence of counterions, have ion–ion effective interactions characteristic of a dielectric medium, contrary to the case of polyelectrolyte blends where these effective interactions are Debye–Hückel type, even on the absence of free ions. The dielectric constant in such a diblock copolymer melt is proportional to the square of the degree of polymerization Np. In the reference state (without interactions) RPA assumes random walk statistics, which are nearly unperturbed in the dielectric; we find the scaling of the end-to-end vector square of a chain in the dielectric. We also discuss the physics of other copolyelectrolytes (polyampholytes).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 11517-11522 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We analyze, by means of a random phase approximation (RPA) calculation, the conditions under which a mixture of oppositely weakly charged polyelectrolytes can microsegregate in the neighborhood of a charged surface creating a layered structure. A number of stable layers can be formed if the surface is sufficiently strongly charged even at temperatures at which the bulk of the mixture is homogeneous. The wave-length of the induced concentration fluctuation is proportional to 1/f1/2 near the microphase transition, where f is the charge density of the polyelectrolytes. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 3145-3157 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We study ion condensation in salt-free dilute solutions of polyelectrolyte chains of different fractal geometries, from random walks to rigid rods. In finite size chains with a discrete charge distribution, ion condensation is only observed in multiple chain systems. A thermodynamic analysis of ion condensation with linearized interactions among the condensed counterions and the monomers leads to rigid rod lowest free energy conformations, regardless of the values of the valency of the monomers (zm), the negative value of the ratio of the valency of the counterions to the valency of the monomers (Pz), and the ratio of the Bjerrum length (lB) to the distance between charges along the polyion (b). As z2mPzlB/b increases, however, the fraction of condensed counterions increases and the polyion concentration at which ion condensation appears decreases. Above this critical polyion concentration, ion condensation is observed even when lB/b〈1/z2mPz. When correlations are included, representing the tendency of the condensed counterions to be surrounded by opposite sign charges, the chain conformation is strongly dependent on the valency of the counterions and lB/b. For large valency counterions and/or lB/b values, collapsed finite chains have lower free energies than rigid rods. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 4670-4677 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We study transitions to periodic structures in block copolymers melts, including concentration fluctuations self-consistently in the analysis. Phase diagrams are constructed for diblock and triblock copolymers of finite molecular weight. The concentration fluctuations increase the stability of the isotropic state, and induce a shift in k*, the wave vector of maximum scattered intensity, to lower values as the transition is approached. We calculate the shift in k* near the transition, and obtain the anisotropic scattering function in the ordered state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...