Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Source
Years
Language
  • 1
    Publication Date: 2022-01-07
    Description: In high accuracy numerical simulations and optimal control of time-dependent processes, often both many time steps and fine spatial discretizations are needed. Adjoint gradient computation, or post-processing of simulation results, requires the storage of the solution trajectories over the whole time, if necessary together with the adaptively refined spatial grids. In this paper we discuss various techniques to reduce the memory requirements, focusing first on the storage of the solution data, which typically are double precision floating point values. We highlight advantages and disadvantages of the different approaches. Moreover, we present an algorithm for the efficient storage of adaptively refined, hierarchic grids, and the integration with the compressed storage of solution data.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-14
    Description: In many applications, geodesic hierarchical models are adequate for the study of temporal observations. We employ such a model derived for manifold-valued data to Kendall's shape space. In particular, instead of the Sasaki metric, we adapt a functional-based metric, which increases the computational efficiency and does not require the implementation of the curvature tensor. We propose the corresponding variational time discretization of geodesics and employ the approach for longitudinal analysis of 2D rat skulls shapes as well as 3D shapes derived from an imaging study on osteoarthritis. Particularly, we perform hypothesis test and estimate the mean trends.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-09
    Description: This repository contains triangle meshes of the shadow-recieving surfaces of 13 ancient sundials; three of them are from Greece and 10 from Italy. The meshes are in correspondence.
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-09
    Description: Data sets sampled in Lie groups are widespread, and as with multivariate data, it is important for many applications to assess the differences between the sets in terms of their distributions. Indices for this task are usually derived by considering the Lie group as a Riemannian manifold. Then, however, compatibility with the group operation is guaranteed only if a bi-invariant metric exists, which is not the case for most non-compact and non-commutative groups. We show here that if one considers an affine connection structure instead, one obtains bi-invariant generalizations of well-known dissimilarity measures: a Hotelling $T^2$ statistic, Bhattacharyya distance and Hellinger distance. Each of the dissimilarity measures matches its multivariate counterpart for Euclidean data and is translation-invariant, so that biases, e.g., through an arbitrary choice of reference, are avoided. We further derive non-parametric two-sample tests that are bi-invariant and consistent. We demonstrate the potential of these dissimilarity measures by performing group tests on data of knee configurations and epidemiological shape data. Significant differences are revealed in both cases.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-24
    Description: The Sasaki metric is the canonical metric on the tangent bundle TM of a Riemannian manifold M. It is highly useful for data analysis in TM (e.g., when one is interested in the statistics of a set of geodesics in M). To this end, computing the Riemannian logarithm is often necessary, and an iterative algorithm was proposed by Muralidharan and Fletcher. In this note, we derive approximation formulas of the energy gradients in their algorithm that we use with success.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-19
    Description: We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-07-19
    Description: In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-19
    Description: For Kendall’s shape space we determine analytically Jacobi fields and parallel transport, and compute geodesic regression. Using the derived expressions, we can fully leverage the geometry via Riemannian optimization and reduce the computational expense by several orders of magnitude. The methodology is demonstrated by performing a longitudinal statistical analysis of epidemiological shape data. As application example we have chosen 3D shapes of knee bones, reconstructed from image data of the Osteoarthritis Initiative. Comparing subject groups with incident and developing osteoarthritis versus normal controls, we find clear differences in the temporal development of femur shapes. This paves the way for early prediction of incident knee osteoarthritis, using geometry data only.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-07-19
    Description: We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model’s ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-19
    Description: In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring.
    Language: English
    Type: bookpart , doc-type:bookPart
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...