Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (197)
Material
Keywords
Language
  • 1
    Title: Numerical methods in photonics /
    Contributer: Lavrinenko, Andrei V. , Lægsgaard, Jesper , Gregersen, Niels , Schmidt, Frank , Søndergard, Thomas
    Publisher: Boca Raton [u.a.] :CRC Press,
    Year of publication: 2015
    Pages: XIX, 334 S.
    Series Statement: Optical sciences and applications of light
    ISBN: 978-1-4665-6388-9
    Type of Medium: Book
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-07
    Description: Reliable numerical simulations of nano-optical structures are the key for design and pre-fabrication processes in diverse disciplines such as lithography in semiconductor industries, spectroscopy of biological molecules, optimization of quantum dot cavities for single-photon sources, and computation of atomic forces like the Casimir Effect. For these purposes a variety of different methods, e.g. FDTD, FEM and RCWA, are in use. On the one hand, FDTD and FEM are investigated intensively - both in mathematics and numerical experiments - and their approximations and convergence properties are well known. On the other hand, there is a lack of these insights in RCWA. In spite of this, RCWA is commonly used to simulate a wide range of systems. We review historical and modern contributions to convergence improvements with respect to RCWA from the early sugesstions to modern developments. We study the convergence rates of the open-source software S4 and analyze the algorithmic properties in detail. Furthermore, we compare RCWA and FEM simulations for different classes of problems including 1D-binary gratings and 2D-periodic photonic crystals.
    Language: English
    Type: poster , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-07
    Description: The paper presents a construction scheme of deriving transparent , i. e. reflection-free, boundary conditions for the numerical solution of Fresnel's equation (being formally equivalent to Schrödinger's equation). These boundary conditions appear to be of a nonlocal Cauchy type. As it turns out, each kind of linear implicit discretization induces its own discrete transparent boundary conditions.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-07
    Description: An adaptive approach to the numerical solution of the wave propagation in integrated optics devices with 1D cross sections is described. First, Fresnel's approximation of the exact wave equation resulting from Maxwell's equations is considered. A criterion to estimate the validity of this approximation is derived. Fresnel's wave equation being formally equivalent to Schroedinger's equation uniquely defines an initial-boundary-value problem, which is solved numerically by a stepwise calculation of the propagating field. Discretization in longitudinal direction first with stepsize control leads to a stationary subproblem for the transversal field distribution, which is then handled by an adaptive finite element method. Thus full adaptivity of the algorithm is realized. The numerical examples are concentrated on taper structures playing an essential role in integrated optics devices for telecommunication systems.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-07
    Description: We present a general technique for constructing nonlocal transparent boundary conditions for one-dimensional Schrödinger-type equations. Our method supplies boundary conditions for the $\theta$-family of implicit one-step discretizations of Schrödinger's equation in time. The use of Mikusi\'nski's operator approach in time avoids direct and inverse transforms between time and frequency domains and thus implements the boundary conditions in a direct manner.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-07
    Description: We present a general technique for constructing nonlocal transparent boundary conditions for time-discretized one-dimensional Schrödinger type equations. The main tool of construction is the discrete counterpart to Mikusi\'nski's continuous algebraic operator approach. Existing techniques are simplified and generalized. Both adaptive time-steps and time-dependent exterior potentials are taken into account.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-07-07
    Description: We present a family of nonlocal transparent boundary conditions for the 2D Helmholtz equation. The whole domain, on which the Helmholtz equation is defined, is decomposed into an interior and an exterior domain. The corresponding interior Helmholtz problem is formulated as a variational problem in standard manner, representing a boundary value problem, whereas the exterior problem is posed as an initial value problem in the radial variable. This problem is then solved approximately by means of the Laplace transformation. The derived boundary conditions are asymptotically correct, model inhomogeneous exterior domains and are simple to implement.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-07
    Description: The reference wave vector of the paraxial Helmholtz equation is determined using various strategies which result all in similar expressions. The effort for its evaluation is so small that the reference wave vector can be adapted for each propagation step of an arbitrary BPM-algorithm.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-07-07
    Description: The paper is motivated by the need for a fast robust adaptive multigrid method to solve complex Helmholtz eigenvalue problems arising from the design of optical chips. A nonlinear multigrid method is developed, which can be regarded as an extension of a previous adaptive Rayleigh quotient minimization method for selfadjoint Helmholtz eigenproblems. Since the complex Helmholtz operator is just a compact nonselfadjoint perturbation of a selfadjoint operator, linear algebra techniques like Schur decomposition can be extended from the finite dimensional case. The efficiency of the derived adaptive nonlinear multigrid method is illustrated by computations for a technologically relevant integrated optics component containing Multi Quantum Well Layers.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-07
    Description: This report collects a number of proposals to determine the lowest eigensolutions of the scalar Helmholtz equation. The basic routine of all discussed algorithms is the standard Rayleigh quotient minimization process. The minimization is performed in a direct multilevel manner, and a subspace iteration is used to determine simultaneously a couple of eigensolutions. As smoother the nonlinear Gauß-Seidel, the nonlinear conjugate gradient method and a preconditioned version of this method are compared with respect to their efficiency. The numerical examples are based on realistic 1D and 2D models of integrated optics components.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...