Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (26)
Source
Keywords
Language
  • English  (26)
  • 1
    Publication Date: 2020-08-05
    Description: In this paper a bottom-up approach of automatic simplification of a railway network is presented. Starting from a very detailed, microscopic level, as it is used in railway simulation, the network is transformed by an algorithm to a less detailed level (macroscopic network), that is sufficient for long-term planning and optimization. In addition running and headway times are rounded to a pre-chosen time discretization by a special cumulative method, which we will present and analyse in this paper. After the transformation we fill the network with given train requests to compute an optimal slot allocation. Then the optimized schedule is re-transformed into the microscopic level and can be simulated without any conflicts occuring between the slots. The algorithm is used to transform the network of the very dense Simplon corridor between Swiss and Italy. With our aggregation it is possible for the first time to generate a profit maximal and conflict free timetable for the corridor across a day by a simultaneously optimization run.
    Keywords: ddc:510
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-05
    Description: We propose a game theoretic model for the spatial distribution of inspectors on a transportation network. The problem is to spread out the controls so as to enforce the payment of a transit toll. We formulate a linear program to find the control distribution which maximizes the expected toll revenue, and a mixed integer program for the problem of minimizing the number of evaders. Furthermore, we show that the problem of finding an optimal mixed strategy for a coalition of $N$ inspectors can be solved efficiently by a column generation procedure. Finally, we give experimental results from an application to the truck toll on German motorways.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Description: In this paper we present the problem of computing optimal tours of toll inspectors on German motorways. This problem is a special type of vehicle routing problem and builds up an integrated model, consisting of a tour planning and a duty rostering part. The tours should guarantee a network-wide control whose intensity is proportional to given spatial and time dependent traffic distributions. We model this using a space-time network and formulate the associated optimization problem by an integer program (IP). Since sequential approaches fail, we integrated the assignment of crews to the tours in our model. In this process all duties of a crew member must fit in a feasible roster. It is modeled as a Multi-Commodity Flow Problem in a directed acyclic graph, where specific paths correspond to feasible rosters for one month. We present computational results in a case-study on a German subnetwork which documents the practicability of our approach.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Description: We present a game-theoretic approach to optimize the strategies of toll enforcement on a motorway network. In contrast to previous approaches, we consider a network with an arbitrary topology, and we handle the fact that users may choose their Origin-Destination path; in particular they may take a detour to avoid sections with a high control rate. We show that a Nash equilibrium can be computed with an LP (although the game is not zero-sum), and we give a MIP for the computation of a Stackelberg equilibrium. Experimental results based on an application to the enforcement of a truck toll on German motorways are presented.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-16
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-05
    Description: Duty rostering problems occur in different application contexts and come in different flavors. They give rise to very large scale integer programs which ypically have lots of solutions and extremely fractional LP relaxations. In such a situation, heuristics can be a viable algorithmic choice. We propose an mprovement method of the Lin-Kernighan type for the solution of duty rostering problems. We illustrate its versatility and solution quality on three different applications in public transit, vehicle routing, and airline rostering with a focus on the management of preferences, fairness, and fatigue, respectively.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-22
    Description: We consider the problem of enforcing a toll on a transportation network with limited inspection resources. We formulate a game theoretic model to optimize the allocation of the inspectors, taking the reaction of the network users into account. The model includes several important aspects for practical operation of the control strategy, such as duty types for the inspectors. In contrast to an existing formulation using flows to describe the users' strategies we choose a path formulation and identify dominated user strategies to significantly reduce the problem size. Computational results suggest that our approach is better suited for practical instances.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-05
    Description: This paper presents a case study on a railway timetable optimization for the very dense Simplon corridor, a major railway connection in the Alps between Switzerland and Italy. Starting from a detailed microscopic network as it is used in railway simulation, the data is transformed by an automatic procedure to a less detailed macroscopic network, that is sufficient for the purpose of capacity planning and amenable to state-of-the-art integer programming optimization methods. In this way, the macroscopic railway network is saturated with trains. Finally, the corresponding timetable is re-transformed to the microscopic level in such a way that it can be operated without any conflicts among the slots. Using this integer programming based micro-macro aggregation-disaggregation approach, it becomes for the first time possible to generate a profit maximal and conflict free timetable for the complete Simplon corridor over an entire day by a simultaneous optimization of all trains requests. This also allows to to undertake a sensitivity analysis of various problem parameters.
    Keywords: ddc:510
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-05
    Description: Today the railway timetabling process and the track allocation is one of the most challenging problems to solve by a railway company. Especially due to the deregulation of the transport market in the recent years several suppliers of railway traffic have entered the market in Europe. This leads to more potential conflicts between trains caused by an increasing demand of train paths. Planning and operating railway transportation systems is extremely hard due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. In order to make best use of the infrastructure and to ensure economic operation, efficient planning of the railway operation is indispensable. Mathematical optimization models and algorithms can help to automatize and tackle these challenges. Our contribution in this paper is to present a renewed planning process due to the liberalization in Europe and an associated concept for track allocation, that consists of three important parts, simulation, aggregation, and optimization. Furthermore, we present results of our general framework for real world data.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...