Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (22)
  • 1980-1984  (12)
  • 1960-1964  (10)
Material
  • Electronic Resource  (22)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 104 (1963), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 39 (1961), S. 816-817 
    ISSN: 1432-1440
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 51 (1964), S. 61-61 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 241 (1961), S. 202-203 
    ISSN: 1432-1912
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 311 (1980), S. 33-40 
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum toxin ; Neuromuscular junction ; Calcium ; Neuraminidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The blocking effect of tetanus toxin on the neuromuscular junction of the mouse phrenic nervehemidiaphragm preparation exposed to the toxin (0.05–20 μg/ml) in the organ bath was studied and compared with the action of botulinum A toxin. 2. The time course of the paralysis of the diaphragm could be divided into a latent and a manifest period. Still during the latent period the effect of the toxin became progressively resistant to washing and, with some delay, to antitoxin. 3. Between 25 and 41°C the time until paralysis strongly depended on temperature with Q 10 of about 2.7. 4. Procedures increasing the transmitter release shortened, and procedures depressing it prolonged the time until paralysis. 5. 4-Aminopyridine and guanidine temporarily restored the contraction of the partially paralyzed diaphragm, indicating the persistence of activatable calcium and acetylcholine pools. Raising the external Ca2+-concentration and application of the Ca-Ionophore A 23187 were ineffective in the doses applied. 6. About 80 min after exposure to the toxin (10 μg/ml), the m.e.p.p. activity decreased by a factor of 30. Parallel to this, paralysis of nerve evoked muscle contraction developed. 7. Neuraminidase treatment did not prevent tetanus toxin poisoning. 8. The paralysis is produced by tetanus toxin itself and not by contaminants as shown by the parallel decrease of toxicity and paralysis following treatment with either antitoxin or brain homogenate, or by the use of spontaneously inactivated toxin. 9. Tetanus toxin was compared with botulinum A toxin as to the shape of its dose-response curve, time course of paralysis, temporary reversal by 4-aminopyridine and behaviour against Ca-ionophore. In any case, both toxins were indistinguishable, albeit botulinum A neurotoxin was calculated to be about 2000 times more potent than tetanus toxin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 312 (1980), S. 255-263 
    ISSN: 1432-1912
    Keywords: Acetylcholine ; Tetanus toxin ; Botulinum toxin ; Myenteric plexus ; Transmitter release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of tetanus and botulinum A toxin were studied on the electrically stimulated myenteric plexus-ileum strip of the guinea pig. The concentrations used were in the range of 104–106 mouse LD50/ml. 1. Tetanus and botulinu, A toxin slowly decrease the amplitude of the contractile response to field stimulation in a dose-dependent manner without influencing the sensitivity to acetylcholine of the smooth muscle. 2. Development of paralysis is preceded by a latent period. Washing and antitoxin slow the paralytic process only when applied during the latent period. 3. The time course of development of paralysis depends on the activity of the strip. It can be slowed by rest, high [Mg2+], or low [Ca2+], and accelerated by raising the stimulation frequency. 4. Substances like 4-aminopyridine, sea anemone toxin II and scorpion toxin which prolong the membrane depolarization restore temporarily the contraction of partially paralysed muscle strips. 5. Poisoned preparations do not differ from controls in their total acetylcholine contents, whereas formation as well as release of [3H]-acetylcholine are decreased by either toxin. It is concluded that a) tetanus toxin and botulinum A toxin are qualitatively indistinguishable with respect to their actions on the postganglionic cholinergic neurons in the ileum, botulinum A toxin being 5 times more potent than tetanus toxin, b) the effects of the toxins at postganglionic cholinergic neurons in the ileum and at motor nerve endings are qualitatively similar, botulinum A toxin being about 500 times more potent than tetanus toxin at the latter preparation (see Habermann et al., 1980b, c) both toxins influence the turnover of acetylcholine but not its tissue concentration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 316 (1981), S. 135-142 
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum A toxin ; Choline ; Gangliosides ; Fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Tetanus toxin and, to a lesser degree, botulinum A toxin inhibit partially and noncompetitively the uptake of [3H]choline into a crude synaptosomal fraction from rat brain cortex. Botulinum toxin acts by its neurotoxin content. The effect is not due to nonspecific synaptosomal damage by the toxins as shown by the lactate dehydrogenase occlusion test, by the absence of swelling and by the preservation of choline stores. The ratio between [3H]acetylcholine and [3H]choline was decreased by both toxins. Inhibition by either toxin depends strongly on the temperature and duration of incubation, and is preceded by an initial latency period. The effect of tetanus toxin, once manifest, is largely resistant against antitoxin. It is not significantly diminished by pretreatment of the synaptosomes with V. cholerae neuraminidase. Fixation of 125I-tetanus toxin proceeds fast, is largely independent of temperature and is diminished by pretreatment of the synaptosomes with neuraminidase. Thus only some of the fixation sites, and not the long-chain gangliosides, are required for the effects of tetanus toxin. A slow, temperature-sensitive process links the fixation with the action. In contrast to rat synaptosomes the chicken preparation is more sensitive to botulinum A than to tetanus toxin, which reflects the differences in sensitivity between live birds and rodents. Our data underline the similarities between the effects of tetanus and those of botulinum A toxin. Their dependence on time and temperature, the time dependence of efficacy of antitoxin, and the concordance in species specificity indicate that the in vitro system mirros some crucial features of poisoning of isolated organs and live animals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 318 (1981), S. 105-111 
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum A toxin ; Noradrenaline outflow ; Gangliosides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Tetanus toxin and, to a lesser degree, botulinum A toxin partially depress the basal and the potassium evoked outflow of [3H]noradrenaline from preloaded particulate rat forebrain cortex. The effect is due to the toxins and not to any contaminant, as shown by dialysis, heating and antitoxin treatment, and also by replacement of crystalline botulinum A toxin with purified neurotoxin. Tetanus toxin also depresses the outflow due to sea anemone toxin II, 4-aminopyridine and d-amphetamine. The effect of the toxins proceeds with time and strongly depends on temperature. Once manifest the tetanus toxin effect is not reversed by antitoxin. Pretreatment with V. cholerae neuraminidase degrades the long-chain gangliosides quantitatively to GM1. Tetanus toxin, applied subsequently remains fully active. High concentrations of tetanus toxin and botulinum A neurotoxin promote the outflow of small amounts of tritium within short incubation times. It is concluded: a) Tetanus toxin is a broad range neurotoxin which acts on processes subsequent to the depolarization step. b) Long-chain gangliosides are only binding sites, but not receptors of tetanus toxin. c) Botulinum A toxin is less potent but resembles tetanus toxin in both promoting and depressing the outflow of noradrenaline.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 323 (1983), S. 269-275 
    ISSN: 1432-1912
    Keywords: Palytoxin ; Tetraphenylphosphonium ; Depolarization ; Binding ; Borate ; Calcium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Palytoxin in concentrations as low as 10−11 to 10−12 M promotes the outflow of the lipophilic [3H]-tetraphenylphosphonium ion from particulate brain cortex of guinea-pigs and rats, and from preloaded crude synaptosomes of rats, which indicates depolarization. The outflow is not influenced by tetrodotoxin or the calcium channel blocker nimodipin, or by substitution of choline for Na+ ions. It is increased by Ca2+ and by borate, the latter interacting with the toxin itself. To assess the fixation of palytoxin to biological membranes, a binding step was installed before the depolarization step. Palytoxin binds to membranes from rat brain, liver, kidney, human and dog erythrocytes, and to a lesser degree to liposomes made from rat brain or erythrocyte lipids. Binding is reversible. It is decreased by mild physical pretreatments of crude synaptosomes. Palytoxin binding is increased in the presence of micromolar concentrations of Ca2+ or borate. It is concluded that the potentiation of palytoxin actions by Ca2+ or borate is at least partially due to the promotion of its binding.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 319 (1982), S. 101-107 
    ISSN: 1432-1912
    Keywords: Palytoxin ; Ouabain ; Erythrocytes ; Permeability ; ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Palytoxin in concentrations as low as 1 pM raises the potassium permeability of rat, human and sheep erythrocytes, and the sodium permeability of human erythrocytes. The release of potassium or sodium from human cells also occurs when extracellular sodium is replaced by choline. 2. Ouabain inhibits the release due to palytoxin of potassium ions from human, sheep and rat erythrocytes, and also the release of sodium ions from human cells. The glycoside effect is specific since a) it is already prominent with 5×10−8 M ouabain b) rat erythrocytes are less sensitive than human cells to ouabain c) potassium release due to amphotericin B or the Ca2+ ionophore A23187 is not influenced by ouabain and d) dog erythrocytes are resistant to palytoxin as well as to ouabain. 3. Palytoxin has no direct influence on the Na+, K+-ATPase. It inhibits the binding of [3H]ouabain to erythrocyte membranes within the same concentration range as unlabelled ouabain. It partially displaces bound [3H]ouabain, and partially inhibits the inactivation of erythrocyte ATPase by the glycoside. Depletion of ATP or of external Ca2+ renders the cells less sensitive to palytoxin. Nevertheless inhibition by ouabain can be still demonstrated with human cells whose ATP stores had been largely exhausted, and also in the absence of external Ca2+. 4. Palytoxin decreases the surface tension at the air-water interface. We assume that the formation of nonspecific pores by palytoxin is linked with its surface activity. Further experiments should demonstrate whether ouabain prevents the binding of palytoxin to erythrocytes (“receptor hypothesis”), or whether an ouabain-sensitive hydrolysis of trace amounts of ATP (“metabolic hypothesis”) promotes the palytoxin effect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...