Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (63)
  • Electronic Resource  (63)
  • Cell & Developmental Biology  (63)
  • 1
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: This investigation consists of an extensive histological study of a special strain of abnormal x-rayed mice, in an attempt to determine the embryonic origin and development of certain congenital abnormalities that are hereditary.The study shows that development of the x-rayed strain is normal up to the thirteenth day after insemination, after which pathological structures appear in the form of blebs, hematomas, and thrombi. As a result of the formation of the blebs and hematomas a general condition is set up within the embryo which resembles that of thrombosis. The thrombi when formed exert a mechanical effect by crowding out the normal tissue. A chemical effect is also produced by the blood cells and fluid extravasated from the thrombus which penetrate into the forming tissues resulting in their perverted development. Thus the thrombi are the immediate factors causing the various regions of the body to be deformed.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 169 (1981), S. 149-159 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Anuran (Rana) and urodele (Ambystoma) amphibian eggs were subjected to prolonged unnatural orientations in relation to gravity. In some cases eggs were rotated 90°, while in other instances eggs were rotated 180° (complete inversion). Alterations in the pigmentation pattern, cleavage pattern, and site of involution were observed. Despite these unnatural orientations to gravity, the morphogenesis of axial structures was frequently normal. Reorganization of the egg cytoplasm apparently takes place after the unnatural orientation. Rather than being localized in a fixed position in the egg (e.g., the egg cortex), the determinants for the pattern of early embryogenesis are probably located in that portion of the cytoplasm (e.g., “internal” cytoplasm) that orients to gravity.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The morphology of the bean-shaped accessory glands (BAGs) of males of Tenebrio molitor is described. All cells in the secretory epithelium are long and narrow (300-400 mμ × 5 mμ). The seven types of secretory cells are distinguished from one another by the morphology of their secretory granules. Granule substructure varies from simple spheres with homogeneous electrondense contents to complex forms with thickened exterior walls or with crystalline and membranous contents. Individual cell types were mapped by staining whole glands with Oil Red O, and the cell distributions were confirmed by wax histology and ultramicroscopy. The secretions of all seven cell types form a secretory plug composed of seven layers. During mating, the secretory plug from each BAG is forced into the ejaculatory duct by contractions of a sheath of circular muscle. The mirror image plugs from symmetrical BAGs fuse and are transformed into the wall of the spermatophore.
    Additional Material: 69 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 171 (1982), S. 259-281 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The aedeagal gland of male Tenebrio molitor consists of numerous acini containing several secretory units (organules) of three epithelial cells in series. The distal cortical cell and intermediate cell are secretory cells. Secretory products are passed into microvilli-lined extracellular reservoirs. From these storage areas products flow through minute canaliculi and into the efferent ductule. Canaliculi, cuticular trabeculae, and fibrillar material are characteristic features of the efferent ductules within the extracellular reservoirs of secretory cells. After passing from the secretory cells, the efferent ductule penetrates the basal ductule cell. The thin epicuticle that comprises the wall of the ductule is confluent with the epicuticle of the cuticular sheath forming the wall of the genital pocket. Secretory products flow from the cortical cell ductule into the intermediate cell and eventually empty into the genital pocket. A chemical reaction apparently takes place in the intermediate cell ductule, resulting in a frothy secretion product. When released from the ductule, this frothy product forms a foam-like layer that coats the inner wall of the genital pocket. Ultrastructural and probable functional aspects of this gland are described and discussed.
    Additional Material: 30 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 172 (1982), S. 97-112 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The tubular accessory gland consists of a simple secretory epithelium surrounded by a muscular coat. Over the pupal instar, the gland increases ten-fold in volume and 15-fold in length. Pupal development is divisible into a phase of mitosis and one of cell growth. During the mitotic phase, cytoplasmic membranes are sparse and nuclei move toward the luminal face of the epithelium to undergo division. In the cell growth phase, the cells become more columnar, a few stacks of rough endoplasmic reticulum are formed, and small dense secretory vesicles appear near the apical surface. The hormonal control of the developmental sequence is discussed.
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 178 (1983), S. 139-154 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The bean-shaped accessory glands of male Tenebrio consist of a single-layered epithelium which is surrounded by a muscular coat. The epithelial layer, which produces precursors of the wall of the spermatophore, contains eight secretory cell types. Each secretory cell type is in one or more homogenous patches, and discharges granules which form one layer of the eight-layered secretory plug. Maturation begins in cell types 4, 7, and 6 on the last pupal day. A newly identified cell (type 8) in the posterolateral epithelium matures last. Cells of individual types mature in synchrony, and their secretory granules “ripen” in a sequence that is characteristic for each type. As the secretory cells of each patch mature, unusual short-lived cells appear at interfaces between patches. In some cases the secretory granules in these boundary cells have ultrastructural features which are mixtures of the definitive characteristics of granules in adjacent cell types. The transitional cell types disappear at 3-4 days after eclosion. Intermediate cell types are absent in the mature gland and boundaries between the patches are distinct. The transitional cells may form granules of intermediate structural characteristics as a dual response to cellular interaction with adjacent and previously differentiated secretory cells.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 28 (1994), S. 231-242 
    ISSN: 0886-1544
    Keywords: squid axoplasm ; organelle movement ; calmodulin ; actin filaments ; axonal transport ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: It was recently shown that, in addition to the well-established microtubule-dependent mechanism, fast transport of organelles in squid giant axons also occurs in the presence of actin filaments [Kuznetsov et al., 1992, Nature 356:722-725]. The objectives of this study were to obtain direct evidence of axoplasmic organelle movement on actin filaments and to demonstrate that these organelles are able to move on skeletal muscle actin filaments. Organelles and actin filaments were visualized by video-enhanced contrast differential interference contrast (AVEC-DIC) microscopy and by video intensified fluorescence microscopy. Actin filaments, prepared by polymerization of monomeric actin purified from rabbit skeletal muscle, were stabilized with rhodamine-phalloidin and adsorbed to cover slips. When axoplasm was extruded on these cover slips in the buffer containing cytochalasin B that prevents the formation of endogenous axonal actin filaments, organelles were observed to move at the fast transport rate. Also, axoplasmic organelles were observed to move on bundles of actin filaments that were of sufficient thickness to be detected directly by AVEC-DIC microscopy. The range of average velocities of movement on the muscle actin filaments was not statistically different from that on axonal filaments. The level of motile activity (number of organelles moving/min/field) on the exogenous filaments was less than on endogenous filaments probably due to the entanglement of filaments on the cover slip surface. We also found that calmodulin (CaM) increased the level of motile activity of organelles on actin filaments. In addition, CaM stimulated the movement of elongated membranous organelles that appeared to be tubular elements of smooth endoplasmic reticulum or extensions of prelysosomes. These studies provide the first direct evidence that organelles from higher animal cells such as neurons move on biochemically defined actin filaments. © 1994 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We present a high-resolution electron microscopic study of the sidearms on microtubules and vesicles that are suggested to form the crossbridges which produce the microtubule-based vesicle transport in squid axoplasm. The sidearms were found attached to the surfaces of the anterogradely transported vesicles in the presence of ATP. These sidearms were made of one to three filaments of uniform diameter. Each filament measured 5-6 nm in width and 30-35 nm in length. The filaments in some of the sidearms had splayed apart by pivoting at their base, thereby assuming a “V” shape. The spread configuration illustrated the independence of the individual filaments. The filaments in other sidearms were closely spaced and oriented parallel to each other, a pattern called the compact configuration. In axoplasmic buffer containing AMP-PNP, structures indistinguishable from the filaments of the sidearms on the vesicles were observed attached to microtubules. Pairs of filaments, thought to represent the basic functional unit, were observed attached to adjacent protofilaments of the microtubules by their distal tips. These data support a model of vesicle movement in which a pair of filaments within a sidearm forms two crossbridges and moves a vesicle by “walking” along the protofilaments of the microtubule.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 10 (1988), S. 285-295 
    ISSN: 0886-1544
    Keywords: organelle movement ; microtubule assembly/disassembly ; motion analysis ; MAPs ; force generation ; axonal transport ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Native microtubules from extruded axoplasm of squid giant axons were used as a paradigm to characterize the motion of organelles along free microtubules and to study the dynamics of microtubule length changes. The motion of large round organelles was visualized by AVEC-DIC microscopy and analyzed at a temporal resolution of 10 frames per second. The movements were smooth and showed no major changes in velocity or direction. During translocation, the organelles paused very rarely. Superimposed on the rather constant mean velocity was a velocity fluctuation, which indicated that the organelles are subject to considerable thermal motion during translocation. Evidence for a regular low-frequency oscillation was not found. The thermal motion was anisotropic such that axial motion was less restricted than lateral motion. We conclude that the crossbridge connecting the moving organelle to the microtubule has a flexible region that behaves like a hinge, which permits preferential movement in the direction parallel to the microtubule. The dynamic changes in length of native microtubules were studied at a temporal resolution of 1 Hz. About 98% of the native microtubules maintained their length (“stable” microtubules), while 2% showed phases of growing and/or shrinking typical for dynamic instability (“dynamic” microtubules). Gliding and organelle motion were not influenced by dynamic length changes. Transitions between growing and shrinking phases were low-frequency events (1-10 minutes per cycle). However, a new type of microtubule length fluctuation, which occurred at a high frequency (a few seconds per cycle), was detected. The length changes were in the 1-3 μm range. The latter events were very prominent at the (+) ends. It appears that the native axonal microtubules are much more stable than the purified microtubules and the microtubules of cultured cells that have been studied thus far. Potential mechanisms accounting for the three states of microtubule stability are discussed. These studies show that the native microtubules from squid giant axons are a very useful paradigm for studying microtubule-related motility events and microtubule dynamics.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 34 (1987), S. 125-128 
    ISSN: 0730-2312
    Keywords: epidermal growth factor ; depolarization ; epidermal carcinoma cells ; vanadate ; calcium influx ; plasma membrane potential A431 cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Vanadate can activate the uptake of Ca in A431 epidermal carcinoma cells by two-to fivefold with no detectable lag period. Preincubation with epidermal growth factor (EGF) to down-regulate the EGF receptor prevents subsequent stimulation by EGF but not that by vanadate. Ca uptake is sodium-independent and is not activated by depolarization in high KCl. On the contrary, vanadate-stimulated uptake is completely inhibited by decreasing the plasma membrane potential from about -65 to -30 mV. These results demonstrate that the EGF receptor is not itself functioning as a Ca channel, that vanadate is not acting at the level of EGF receptor, and that the Ca transport system exhibits an unusual potential sensitivity in that it is inhibited by depolarization of the plasma membrane.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...