Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (3)
Material
  • Electronic Resource  (3)
Years
  • 1
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 31 (1996), S. 551-557 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Lanthanum chromate (LaCrO4) was synthesized as a low temperature ( 〈 700 °C) intermediate to perovskite-type, lanthanum chromite (LaCrO3). The lattice parameters, atom positions and bond lengths determined from X-ray powder diffraction show that LaCrO4 forms a monazite-type crystal structure. Lanthanum chromate forms a solid solution with Ca, having a solubility between 10 and 20 at%. Thermal analysis shows that at ambient oxygen pressure, LaCrO4 transforms to LaCrO3 at a temperature near 700 °C. It also indicates that (La,Ca)CrO4 initially transforms to LaCrO3 and CaCrO4 with the subsequent formation of a (La,Ca)CrO3 solid solution. Evidence of Ca segregation to the surface of (La,Ca) CrO3 particles is given by Auger electron spectroscopy and scanning electron microscopy.[/p]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 31 (1996), S. 157-163 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The sinterability of (La,Ca)CrO3 is analysed by comparing the liquid phase behaviour in A-site excess and A-site deficient compositions (referring to the ABO3 formula). The analysis shows that a series of A-site excess and deficient compositions form distinct liquid phases belonging to the CaO-Cr2O3 phase system. Although both series experience grain growth and densification due to the presence of a liquid phase, the A-site excess compositions exhibit greater shrinkage and sinter to closed porosity, whereas the A-site deficient compositions remain porous. During the final stages of sintering, surplus liquid from the A-site excess material exudes to the free-surface forming a layer of uniform thickness. By comparison, the liquid in the A-site deficient composition segregates to the free-surface forming islands and leaving porous regions in the bulk matrix. It is concluded that the different liquid phase compositions in the A-site excess and A-site deficient (La,Ca)CrO3 have dissimilar wetting characteristics during the later stages of sintering. The A-site deficient liquid forms a premature solid phase, which accounts for the difference in sintering behaviour.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...