Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (23)
  • 2016  (23)
Source
Years
  • 2015-2019  (23)
Year
Language
  • 1
    Publication Date: 2020-08-05
    Description: This paper proposes a highly integrated solution approach for rolling stock planning problems in the context of long distance passenger traffic between cities. The main contributions are a generic hypergraph-based mixed-integer programming model for the considered rolling stock rotation problem and an integrated algorithm for its solution. The newly developed algorithm is able to handle a large spectrum of industrial railway requirements, such as vehicle composition, maintenance constraints, infrastructure capacities, and regularity aspects. We show that our approach has the power to produce rolling stock rotations that can be implemented in practice. In this way, the rolling stock rotations at the largest German long distance operator Deutsche Bahn Fernverkehr AG could be optimized by an automated system utilizing advanced mathematical programming techniques.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-05
    Description: We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that the sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. In this context, macroscopic refers to an aggregation of complex and large real-world structures into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We provide a mixed-integer nonlinear programming (MINLP) formulation for the FTRP, which is a multicommodity flow model on a time-expanded graph with additional routing constraints. The model’s nonlinearities originate from an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model (MILP) by piecewise linear approximation. The latter is solved by a state-of-the art MILP solver for various real-world test instances.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Description: The problem of allocating operating rooms (OR) to surgical cases is a challenging task, involving both combinatorial aspects and uncertainty handling. In this article, we formulate this problem as a job shop scheduling problem, in which the job durations follow a lognormal distribution. We propose to use a cutting-plane approach to solve a robust version of this optimization problem. To this end, we develop an algorithm based on fixed-point iterations to solve the subproblems that identify worst-case scenarios and generate cut inequalities. The procedure is illustrated with numerical experiments based on real data from a major hospital in Berlin.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Description: We propose an algorithm to approximate the distribution of the completion time (makespan) and the tardiness costs of a project, when durations are lognormally distributed. This problem arises naturally for the optimization of surgery scheduling, where it is very common to assume lognormal procedure times. We present an analogous of Clark's formulas to compute the moments of the maximum of a set of lognormal variables. Then, we use moment matching formulas to approximate the earliest starting time of each activity of the project by a shifted lognormal variable. This approach can be seen as a lognormal variant of a state-of-the-art method used for the statistical static timing analysis (SSTA) of digital circuits. We carried out numerical experiments with instances based on real data from the application to surgery scheduling. We obtained very promising results, especially for the approximation of the mean overtime in operating rooms, for which our algorithm yields results of a similar quality to Monte-Carlo simulations requiring an amount of computing time several orders of magnitude larger.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-22
    Description: We study an extension of the shortest path network interdiction problem and present a novel real-world application in this area. We consider the problem of determining optimal locations for toll control stations on the arcs of a transportation network. We handle the fact that drivers can avoid control stations on parallel secondary roads. The problem is formulated as a mixed integer program and solved using Benders decomposition. We present experimental results for the application of our models to German motorways.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Description: PolySCIP is a new solver for multi-criteria integer and multi-criteria linear programs handling an arbitrary number of objectives. It is available as an official part of the non-commercial constraint integer programming framework SCIP. It utilizes a lifted weight space approach to compute the set of supported extreme non-dominated points and unbounded non-dominated rays, respectively. The algorithmic approach can be summarized as follows: At the beginning an arbitrary non-dominated point is computed (or it is determined that there is none) and a weight space polyhedron created. In every next iteration a vertex of the weight space polyhedron is selected whose entries give rise to a single-objective optimization problem via a combination of the original objectives. If the ptimization of this single-objective problem yields a new non-dominated point, the weight space polyhedron is updated. Otherwise another vertex of the weight space polyhedron is investigated. The algorithm finishes when all vertices of the weight space polyhedron have been investigated. The file format of PolySCIP is based on the widely used MPS format and allows a simple generation of multi-criteria models via an algebraic modelling language.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-05
    Description: The task of periodic timetabling is to determine trip arrival and departure times in a public transport system such that travel and transfer times are minimized. This paper investigates periodic timetabling models with integrated passenger routing. We show that different routing models can have a huge influence on the quality of the entire system: Whatever metric is applied, the performance ratios of timetables w.r.t. different routing models can be arbitrarily large. Computations on a real-world instance for the city of Wuppertal substantiate the theoretical findings. These results indicate the existence of untapped optimization potentials that can be used to improve the efficiency of public transport systems by integrating passenger routing.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-05
    Description: Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem. We give the first pseudo-polynomial time separation algorithm for cycle inequalities, and we give a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-10-14
    Description: Periodic timetabling is an important strategic planning problem in public transport. The task is to determine periodic arrival and departure times of the lines in a given network, minimizing the travel time of the passengers. We extend the modulo network simplex method, a well-established heuristic for the periodic timetabling problem, by integrating a passenger (re)routing step into the pivot operations. Computations on real-world networks show that we can indeed find timetables with much shorter total travel time, when we take the passengers' travel paths into consideration.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-14
    Description: Periodic timetabling is an important strategic planning problem in public transport. The task is to determine periodic arrival and departure times of the lines in a given network, minimizing the travel time of the passengers. We extend the modulo network simplex method, a well-established heuristic for the periodic timetabling problem, by integrating a passenger (re)routing step into the pivot operations. Computations on real-world networks show that we can indeed find timetables with much shorter total travel time, when we take the passengers' travel paths into consideration.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...