Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (7)
  • 2020  (7)
Years
  • 2020-2023  (7)
Year
Language
  • 1
    Publication Date: 2021-02-22
    Description: For providing railway services the company’s railway rolling stock is one if not the most important ingredient. It decides about the number of passenger or cargo trips the company can offer, about the quality a passenger experiences the train ride and it is often related to the image of the company itself. Thus, it is highly desired to have the available rolling stock in the best shape possible. Moreover, in many countries, as Germany where our industrial partner DB Fernverkehr AG (DBF) is located, laws enforce regular vehicle inspections to ensure the safety of the passengers. This leads to rolling stock optimization problems with complex rules for vehicle maintenance. This problem is well studied in the literature for example see Maroti and Kroon 2005, or Cordeau et. al. 2001 for applications including vehicle maintenance. The contribution of this paper is a new algorithmic approach to solve the Rolling Stock Rotation Problem for the ICE high speed train fleet of DBF with included vehicle maintenance. It is based on a relaxation of a mixed integer linear programming model with an iterative cut generation to enforce the feasibility of a solution of the relaxation in the solution space of the original problem. The resulting mixed integer linear programming model is based on a hypergraph approach presented in Borndörfer et. al. 2015. The new approach is tested on real world instances modeling different scenarios for the ICE high speed train network in Germany and compared to the approaches of Reuther 2017 that are in operation at DB Fernverkehr AG. The approach shows a significant reduction of the run time to produce solutions with comparable or even better objective function values.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-28
    Description: We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Description: This paper focuses on a special case of vehicle routing problem where perishable goods are considered. Deliveries have to be performed until a due date date, which may vary for different products. Storing products is prohibited. Since late deliveries have a direct impact on the revenues for these products, a precise demand prediction is important. In our practical case the product demands and vehicle driving times for the product delivery are dependent on weather conditions, i.e., temperatures, wind, and precipitation. In this paper the definition and a solution approach to the Vehicle Routing Problem with Perishable Goods is presented. The approach includes a procedure how historical weather data is used to predict demands and driving times. Its run time and solution quality is evaluated on different data sets given by the MOPTA Competition 2018.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-12
    Description: We propose in this paper the Dynamic Multiobjective Shortest Problem. It features multidimensional states that can depend on several variables and not only on time; this setting is motivated by flight planning and electric vehicle routing applications. We give an exact algorithm for the FIFO case and derive from it an FPTAS, which is computationally efficient. It also features the best known complexity in the static case.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-14
    Description: We propose a hybrid discrete-continuous algorithm for flight planning in free flight airspaces. In a first step, our DisCOptER method discrete-continuous optimization for enhanced resolution) computes a globally optimal approximate flight path on a discretization of the problem using the A* method. This route initializes a Newton method that converges rapidly to the smooth optimum in a second step. The correctness, accuracy, and complexity of the method are goverened by the choice of the crossover point that determines the coarseness of the discretization. We analyze the optimal choice of the crossover point and demonstrate the asymtotic superority of DisCOptER over a purely discrete approach.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-14
    Description: The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-10
    Description: Urban transportation systems are subject to a high level of variation and fluctuation in demand over the day. When this variation and fluctuation are observed in both time and space, it is crucial to develop line plans that are responsive to demand. A multi-period line planning approach that considers a changing demand during the planning horizon is proposed. If such systems are also subject to limitations of resources, a dynamic transfer of resources from one line to another throughout the planning horizon should also be considered. A mathematical modelling framework is developed to solve the line planning problem with a cost-oriented approach considering transfer of resources during a finite length planning horizon of multiple periods. We use real-life public transportation network data for our computational results. We analyze whether or not multi-period solutions outperform single period solutions in terms of feasibility and relevant costs. The importance of demand variation on multi-period solutions is investigated. We evaluate the impact of resource transfer constraints on the effectiveness of solutions. We also study the effect of period lengths along with the problem parameters that are significant for and sensitive to the optimality of solutions.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...