Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Opus-Repositorium ZIB  (3)
  • 1990-1994  (3)
  • 1993  (3)
Datenquelle
Erscheinungszeitraum
  • 1990-1994  (3)
Jahr
Schlagwörter
Sprache
  • 1
    facet.materialart.
    Unbekannt
    Publikationsdatum: 2014-02-26
    Beschreibung: \def\KPA{\hbox{\rm KPA}}\def\A{{\rm A}}\def\KPW{\hbox{\rm KPW}}\def\W{{\rm W}}\def\B{{\rm B}} \def\D{{\rm D}} Recently M.~M.~Kapranov [Kap] defined a poset $\KPA_{n-1}$, called the {\it permuto-associahedron}, which is a hybrid between the face poset of the permutahedron and the associahedron. Its faces correspond to the partially parenthesized, ordered, partitions of the set $\{1,2,\ldots,n\}$, with a natural partial order. Kapranov showed that $\KPA_{n-1}$ is the face poset of a CW-ball, and explored its connection with a category-theoretic result of MacLane, Drinfeld's work on the Knizhnik-Zamolodchikov equations, and a certain moduli space of curves. He also asked the question of whether this CW-ball can be realized as a convex polytope. We show that this permuto-associahedron corresponds to the type $\A_{n-1}$ in a family of convex polytopes $\KPW$ associated to each of the classical Coxeter groups, $\W = \A_{n-1}, \B_n, \D_n$. The embedding of these polytopes relies on the secondary polytope construction of the associahedron due to Gel'fand, Kapranov, and Zelevinsky. Our proofs yield integral coordinates, with all vertices on a sphere, and include a complete description of the facet-defining inequalities. Also we show that for each $\W$, the dual polytope $\KPW^*$ is a refinement (as a CW-complex) of the Coxeter complex associated to $\W$, and a coarsening of the barycentric subdivision of the Coxeter complex. In the case $\W=\A_{n-1}$, this gives an elementary proof of Kapranov's original sphericity result.
    Schlagwort(e): ddc:000
    Sprache: Englisch
    Materialart: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Publikationsdatum: 2014-02-26
    Beschreibung: These lecture notes have several aims: \begin{itemize} \item to give an introduction to some basic facts about convex polytopes, with an emphasis on the basic methods that yield them (Fourier-Motzkin elimination, Schlegel diagrams, shellability, Gale transforms and oriented matroids), \item to discuss some important examples and elegant constructions (cyclic and neighborly polytopes, zonotopes, Minkowski sums, permutahedra and associahedra, fiber polytopes, the Lawrence construction) \item and to illustrate why polytope theory is exciting, with highlights like Kalai's new diameter bounds, the construction of non-rational polytopes, the Bohne-Dress tiling theorem, shellability and the upper bound theorem, .... \end{itemize} For several of these topics the decisive break-through is very recent, which suggests that there is much more discovered.
    Schlagwort(e): ddc:000
    Sprache: Englisch
    Materialart: reportzib , doc-type:preprint
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2014-02-26
    Beschreibung: We prove a natural bijection between the polytopal tilings of a zonotope $Z$ by zonotopes, and the one-element-liftings of the oriented matroid ${\cal M}(Z)$ associated with $Z$. This yields a simple proof and a strengthening of the Bohne-Dress Theorem on zonotopal tilings.
    Schlagwort(e): ddc:000
    Sprache: Englisch
    Materialart: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...