Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (4)
  • 1996  (4)
Years
  • 1995-1999  (4)
Year
Keywords
Language
  • 1
    Publication Date: 2014-02-26
    Description: We present an integrated time--space adaptive finite element method for solving systems of twodimensional nonlinear parabolic systems in complex geometry. The partial differential system is first discretized in time using a singly linearly implicit Runge--Kutta method of order three. Local time errors for the step size control are defined by an embedding strategy. These errors are used to propose a new time step by a PI controller algorithm. A multilevel finite element method with piecewise linear functions on unstructured triangular meshes is subsequently applied for the discretization in space. The local error estimate of the finite element solution steering the adaptive mesh refinement is obtained solving local problems with quadratic trial functions located essentially at the edges of the triangulation. This two--fold adaptivity successfully ensures an a priori prescribed tolerance of the solution. The devised method is applied to laminar gaseous combustion and to solid--solid alloying reactions. We demonstrate that for such demanding applications the employed error estimation and adaption strategies generate an efficient and versatile algorithm.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-14
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-26
    Description: We present Multilevel Finite Element computations for twodimensional reaction-diffusion systems modelling laminar flames. These systems are prototypes for extreme stiffness in time and space. The first of these two rather general features is accounted for by an improved control mechanism for the time step. The second one is reflected through very thin travelling reaction fronts for which we propose an anisotropic discretization by local directional refinement.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-26
    Description: An integrated time--space adaptive finite element method for solving mixed systems of nonlinear parabolic, elliptic, and differential algebraic equations is presented. The approach is independent of the spatial dimension. For the discretization in time we use singly diagonally linearly implicit Runge--Kutta methods of Rosenbrock type. Local time errors for the step size control are defined by an embedded strategy. A multilevel finite element Galerkin method is subsequently applied for the discretization in space. A posteriori estimates of local spatial discretization errors are obtained solving local problems with higher order approximation. Superconvergence arguments allow to simplify the required computations. Two different strategies to obtain the start grid of the multilevel process are compared. The devised method is applied to a solid--solid combustion problem.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...