Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • 1997  (3)
Material
Years
  • 1995-1999  (3)
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 8116-8123 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Nucleation rate measurements of water in the presence of nitrogen as a carrier gas are reported at total pressures near 10, 25, and 40 bar, and temperatures of 230 and 250 K. The results were obtained using our pulse-expansion wave tube, particularly suited for high pressure nucleation research. Enhanced fugacity of water vapor in the mixture, due to the presence of nitrogen, was quantitatively taken into account. Values of the enhancement factors as a function of pressure and temperature were correlated from accurate gravimetric measurements available in literature. The results demonstrate a strong influence of nitrogen pressure on the nucleation behavior of water, when temperature and supersaturation are kept fixed. The effect is associated with a decrease of the surface tension of water, due to the adsorption of nitrogen onto the liquid surface. A tentative model is presented that qualitatively describes this decreasing surface tension with pressure. The competition between the opposing effects of enhanced fugacity and decreasing surface tension is identified as a complicating factor in detecting pressure effects on nucleation. This conclusion is expected to hold for other vapor/carrier gas systems as well. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 4152-4156 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Within the scope of joint experiments by the international Nucleation Workshop Group, nucleation experiments on n-pentanol were carried out using a pulse-expansion wave tube. Data were obtained for nucleation at temperatures between 240 K and 260 K. Total pressures of the carrier gas (helium) during nucleation varied from 89 to 109 kPa. The results are presented in tabular form, to facilitate future comparison. Our results are consistent with existing data by Hrubý et al. Comparisons are made to the Kinetic Classical Theory (KCT) as well as to the semiphenomenological theory by Kalikmanov and Van Dongen (KvD–SPT). Although both theories predict nucleation rates that are apparently too low in the temperature range of interest, the KvD–SPT is approximately two orders of magnitude closer to the experimental results. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experiments in fluids 23 (1997), S. 54-63 
    ISSN: 1432-1114
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  The design and performance of a new pulse-expansion wave tube for nucleation studies at high pressures are described. The pulse-expansion wave tube is a special shock tube in which a nucleation pulse is formed at the endwall of the high pressure section. The nucleation pulse is due to reflections of the initial shock wave at a local widening situated in the low pressure section at a short distance from the diaphragm. The nucleation pulse has a duration of the order of 200 μs, while nucleation pressures that can be achieved range from 1 to 50 bar total pressure. Droplet size and droplet number density can accurately be determined by a 90°-Mie light scattering method and a light extinction method. The range of nucleation rates that can be measured is 108 cm-3 s-1〈J〈1011 cm-3 s-1. We will illustrate the functioning and possibilities of the new pulse-expansion wave tube by nucleation rate measurements in the gas-vapour mixture nitrogen/water in the temperature range 200–260 K, and in the mixture methane/n-nonane as a function of supersaturation S at various total pressures up to 40 bar and temperatures around 240 K.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...