Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
  • 2000  (3)
  • ddc:000  (3)
Years
  • 2000-2004  (3)
Year
Keywords
  • ddc:000  (3)
Language
  • 1
    Publication Date: 2022-07-07
    Description: We establish the relationship between the transparent boundary condition (BPP) of Baskakov and Popov [Wave Motion 14 (1991) 121-128] and Pakpadakis et. al. [J. Acoust. Soc. Am. 92 (1992) 2030-2038] and a second boundary condition (SDY) introduced by Schmidt and Deuflhard [Comp. Math. Appl. 29 (1995) 53-76] and Schmidt and Yevick [J. Compu. Phys. 134 (1997) 96-107], that is explicitly tailored to the form of the underlying numerical propagation scheme. Our analysis demonstrates that if the domain is first discretized in the propagation direction, the SDY expression can be obtained by applying the exact sequence of steps used to derive the BPP procedure. The BPP method is thus an approximate realization of the computationally far simpler and unconditionally stable SDY boundary condition.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-07-07
    Description: We derive exact discrete nonreflecting boundary conditions for time-harmonic scattering problems modeled by the Helmholtz equation. The main idea is to consider the exterior problem as an initial value problem with initial data given on the boundary of the computational domain. The solution of the exterior problem is obtained via Laplace transformation techniques which supply the boundary conditions in terms of discrete Dirichlet-to-Neumann operators.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-07
    Description: This paper has been motivated by the need for a fast robust adaptive multigrid method to solve the vectorial Maxwell eigenvalue problem arising from the design of optical chips. Our nonlinear multigrid methods are based on a previous method for the scalar Helmholtz equation, which must be modified to cope with the null space of the Maxwell operator due to the divergence condition. We present two different approaches. First, we present a multigrid algorithm based on an edge element discretization of time-harmonic Maxwell's equations, including the divergence condition. Second, an explicit elimination of longitudinal magnetic components leads to a nodal discretization known to avoid discrete \emph{spurious modes} also and a vectorial eigenvalue problem, for which we present a multigrid solver. Numerical examples show that the edge element discretization clearly outperforms the nodal element approach.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...