Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
  • 2015  (3)
Years
  • 2015-2019  (3)
Year
Language
  • 1
    Publication Date: 2020-08-05
    Description: Modern MIP solving software incorporates dozens of auxiliary algorithmic components for supporting the branch-and-bound search in finding and improving solutions and in strengthening the relaxation. Intuitively, a dynamic solving strategy with an appropriate emphasis on different solving components and strategies is desirable during the search process. We propose an adaptive solver behavior that dynamically reacts on transitions between the three typical phases of a MIP solving process: The first phase objective is to find a feasible solution. During the second phase, a sequence of incumbent solutions gets constructed until the incumbent is eventually optimal. Proving optimality is the central objective of the remaining third phase. Based on the MIP-solver SCIP, we demonstrate the usefulness of the phase concept both with an exact recognition of the optimality of a solution, and provide heuristic alternatives to make use of the concept in practice.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-05
    Description: The selection of a good branching variable is crucial for small search trees in Mixed Integer Programming. Most modern solvers employ a strategy guided by history information, mainly the variable pseudo-costs, which are used to estimate the objective gain. At the beginning of the search, such information is usually collected via an expensive look-ahead strategy called strong branching until variables are considered reliable. The reliability notion is thereby mostly based on fixed-number thresholds, which may lead to ineffective branching decisions on problems with highly varying objective gains. We suggest two new notions of reliability motivated by mathematical statistics that take into account the sample variance of the past observations on each variable individually. The first method prioritizes additional strong branching look-aheads on variables whose pseudo-costs show a large variance by measuring the relative error of a pseudo-cost confidence interval. The second method performs a specialized version of a two-sample Student’s t -test for filtering branching candidates with a high probability to be better than the best history candidate. Both methods were implemented in the MIP-solver SCIP and computational results on standard MIP test sets are presented.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Description: The selection of a good branching variable is crucial for small search trees in Mixed Integer Programming. Most modern solvers employ a strategy guided by history information, mainly the variable pseudo-costs, which are used to estimate the objective gain. At the beginning of the search, such information is usually collected via an expensive look-ahead strategy called strong-branching until variables are considered reliable. The reliability notion is thereby mostly based on fixed-number thresholds, which may lead to ineffective branching decisions on problems with highly varying objective gains. We suggest two new notions of reliability motivated by mathematical statistics that take into account the sample variance of the past observations on each variable individually. The first method prioritizes additional strong-branching look-aheads on variables whose pseudo-costs show a large variance by measuring the relative error of a pseudo-cost confidence interval. The second method performs a two-sample Student-t test for filtering branching candidates with a high probability to be better than the best history candidate. Both methods were implemented in the MIP-solver SCIP and computational results on standard MIP test sets are presented.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...