Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
  • 2019  (3)
Years
  • 2015-2019  (3)
Year
Language
  • 1
    Publication Date: 2020-08-05
    Description: We show that the A-optimal design optimization problem over m design points in R^n is equivalent to minimizing a quadratic function plus a group lasso sparsity inducing term over n x m real matrices. This observation allows to describe several new algorithms for A-optimal design based on splitting and block coordinate decomposition. These techniques are well known and proved powerful to treat large scale problems in machine learning and signal processing communities. The proposed algorithms come with rigorous convergence guarantees and convergence rate estimate stemming from the optimization literature. Performances are illustrated on synthetic benchmarks and compared to existing methods for solving the optimal design problem.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-14
    Description: Mathematische Algorithmen können durch Vorhersage von Unsicherheiten optimierte OP-Pläne berechnen, sodass mehrere Zielkriterien wie Überstunden, Wartezeit und Ausfälle im OP minimiert werden.
    Language: German
    Type: other , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-02
    Description: Model-based optimal designs of experiments (M-bODE) for nonlinear models are typically hard to compute. The literature on the computation of M-bODE for nonlinear models when the covariates are categorical variables, i.e. factorial experiments, is scarce. We propose second order cone programming (SOCP) and Mixed Integer Second Order Programming (MISOCP) formulations to find, respectively, approximate and exact A- and D-optimal designs for 2𝑘 factorial experiments for Generalized Linear Models (GLMs). First, locally optimal (approximate and exact) designs for GLMs are addressed using the formulation of Sagnol (J Stat Plan Inference 141(5):1684–1708, 2011). Next, we consider the scenario where the parameters are uncertain, and new formulations are proposed to find Bayesian optimal designs using the A- and log det D-optimality criteria. A quasi Monte-Carlo sampling procedure based on the Hammersley sequence is used for computing the expectation in the parametric region of interest. We demonstrate the application of the algorithm with the logistic, probit and complementary log–log models and consider full and fractional factorial designs.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...