Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (8)
Years
Year
Language
  • 1
  • 2
    Publication Date: 2022-03-11
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-10
    Description: Many real-world processes can naturally be modeled as systems of interacting agents. However, the long-term simulation of such agent-based models is often intractable when the system becomes too large. In this paper, starting from a stochastic spatio-temporal agent-based model (ABM), we present a reduced model in terms of stochastic PDEs that describes the evolution of agent number densities for large populations. We discuss the algorithmic details of both approaches; regarding the SPDE model, we apply Finite Element discretization in space which not only ensures efficient simulation but also serves as a regularization of the SPDE. Illustrative examples for the spreading of an innovation among agents are given and used for comparing ABM and SPDE models.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-07
    Description: Agent based models (ABMs) are a useful tool for modeling spatio-temporal population dynamics, where many details can be included in the model description. Their computational cost though is very high and for stochastic ABMs a lot of individual simulations are required to sample quantities of interest. Especially, large numbers of agents render the sampling infeasible. Model reduction to a metapopulation model leads to a significant gain in computational efficiency, while preserving important dynamical properties. Based on a precise mathematical description of spatio-temporal ABMs, we present two different metapopulation approaches (stochastic and piecewise deterministic) and discuss the approximation steps between the different models within this framework. Especially, we show how the stochastic metapopulation model results from a Galerkin projection of the underlying ABM onto a finite-dimensional ansatz space. Finally, we utilize our modeling framework to provide a conceptual model for the spreading of COVID-19 that can be scaled to real-world scenarios.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-28
    Description: We study the romanization process of northern Africa from 50 BC till 300 AD. Our goal is to infer the communication strength between different subregions, based on the evolution of the status of cities. Herefore, we use the general inverse infection model, that infers the weights of a known underlying network, given observations of the spreading on this network. As infection process we choose the SI metapopulation model, where I stands for a city with a Roman status. To solve the minimization problem we use the particle swarm optimization algorithm with a specific choice of parameters.
    Language: German
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-11-14
    Description: While spectral clustering algorithms for undirected graphs are well established and have been successfully applied to unsupervised machine learning problems ranging from image segmentation and genome sequencing to signal processing and social network analysis, clustering directed graphs remains notoriously difficult. Two of the main challenges are that the eigenvalues and eigenvectors of graph Laplacians associated with directed graphs are in general complex-valued and that there is no universally accepted definition of clusters in directed graphs. We first exploit relationships between the graph Laplacian and transfer operators and in particular between clusters in undirected graphs and metastable sets in stochastic dynamical systems and then use a generalization of the notion of metastability to derive clustering algorithms for directed and time-evolving graphs. The resulting clusters can be interpreted as coherent sets, which play an important role in the analysis of transport and mixing processes in fluid flows.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-11-24
    Description: Spreading processes are important drivers of change in social systems. To understand the mechanisms of spreading it is fundamental to have information about the underlying contact network and the dynamical parameters of the process. However, in many real-wold examples, this information is not known and needs to be inferred from data. State-of-the-art spreading inference methods have mostly been applied to modern social systems, as they rely on availability of very detailed data. In this paper we study the inference challenges for historical spreading processes, for which only very fragmented information is available. To cope with this problem, we extend existing network models by formulating a model on a mesoscale with temporal spreading rate. Furthermore, we formulate the respective parameter inference problem for the extended model. We apply our approach to the romanization process of Northern Tunisia, a scarce dataset, and study properties of the inferred time-evolving interregional networks. As a result, we show that (1) optimal solutions consist of very different network structures and spreading rate functions; and that (2) these diverse solutions produce very similar spreading patterns. Finally, we discuss how inferred dominant interregional connections are related to available archaeological traces. Historical networks resulting from our approach can help understanding complex processes of cultural change in ancient times.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-11-24
    Description: Spreading processes are important drivers of change in social systems. To understand the mechanisms of spreading it is fundamental to have information about the underlying contact network and the dynamical parameters of the process. However, in many real-wold examples, this information is not known and needs to be inferred from data. State-of-the-art spreading inference methods have mostly been applied to modern social systems, as they rely on availability of very detailed data. In this paper we study the inference challenges for historical spreading processes, for which only very fragmented information is available. To cope with this problem, we extend existing network models by formulating a model on a mesoscale with temporal spreading rate. Furthermore, we formulate the respective parameter inference problem for the extended model. We apply our approach to the romanization process of Northern Tunisia, a scarce dataset, and study properties of the inferred time-evolving interregional networks. As a result, we show that (1) optimal solutions consist of very different network structures and spreading rate functions; and that (2) these diverse solutions produce very similar spreading patterns. Finally, we discuss how inferred dominant interregional connections are related to available archaeological traces. Historical networks resulting from our approach can help understanding complex processes of cultural change in ancient times.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...