feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 2020-2024  (1)
  • 1
    Publication Date: 2023-03-20
    Description: The covering of a graph with (possibly disjoint) connected subgraphs is a funda-mental problem in graph theory. In this paper, we study a version to cover a graph’svertices by connected subgraphs subject to lower and upper weight bounds, and pro-pose a column generation approach to dynamically generate feasible and promisingsubgraphs. Our focus is on the solution of the pricing problem which turns out to bea variant of the NP-hard Maximum Weight Connected Subgraph Problem. We com-pare different formulations to handle connectivity, and find that a single-commodityflow formulation performs best. This is notable since the respective literature seemsto have widely dismissed this formulation. We improve it to a new coarse-to-fine flowformulation that is theoretically and computationally superior, especially for largeinstances with many vertices of degree 2 like highway networks, where it provides aspeed-up factor of 5 over the non-flow-based formulations. We also propose a pre-processing method that exploits a median property of weight-constrained subgraphs,a primal heuristic, and a local search heuristic. In an extensive computational studywe evaluate the presented connectivity formulations on different classes of instances,and demonstrate the effectiveness of the proposed enhancements. Their speed-upsessentially multiply to an overall factor of well over 10. Overall, our approach allowsthe reliable solution of instances with several hundreds of vertices in a few min-utes. These findings are further corroborated in a comparison to existing districtingmodels on a set of test instances from the literature
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...