Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (8)
Years
Year
Language
  • 1
    Publication Date: 2017-11-06
    Description: In molecular dynamics and related fields one considers dynamical descriptions of complex systems in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension, large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction coordinates is examined in order to extract statistical information like free energies or reaction rates. In this context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted considerable attention in the literature. In this article, we contribute to this discussion: We first show that if we start with an ergodic diffusion processes whose invariant measure is unique then these properties are inherited by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities for the full dynamics, and compare our findings to results from approaches like Zwanzig-Mori, averaging, or homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that recent algorithmic techniques like the ”equation-free” approach and the ”heterogeneous multiscale method” can be seen as special cases of our approach.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-15
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-20
    Description: We propose numerical algorithms for solving optimal control and importance sampling problems based on simplified models. The algorithms combine model reduction techniques for multiscale diffusions and stochastic optimization tools, with the aim of reducing the original, possibly high-dimensional problem to a lower dimensional representation of the dynamics, in which only a few relevant degrees of freedom are controlled or biased. Specifically, we study situations in which either a reaction coordinate onto which the dynamics can be projected is known, or situations in which the dynamics shows strongly localized behavior in the small noise regime. No explicit assumptions about small parameters or scale separation have to be made. We illustrate the approach with simple, but paradigmatic numerical examples.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-09
    Description: Importance sampling is a widely used technique to reduce the variance of a Monte Carlo estimator by an appropriate change of measure. In this work, we study importance sampling in the framework of diffusion process and consider the change of measure which is realized by adding a control force to the original dynamics. For certain exponential type expectation, the corresponding control force of the optimal change of measure leads to a zero-variance estimator and is related to the solution of a Hamilton–Jacobi–Bellmann equation. We focus on certain diffusions with both slow and fast variables, and the main result is that we obtain an upper bound of the relative error for the importance sampling estimators with control obtained from the limiting dynamics. We demonstrate our approximation strategy with an illustrative numerical example.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-16
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-09
    Description: The article surveys and extends variational formulations of the thermodynamic free energy and discusses their information-theoretic content from the perspective of mathematical statistics. We revisit the well-known Jarzynski equality for nonequilibrium free energy sampling within the framework of importance sampling and Girsanov change-of-measure transformations. The implications of the different variational formulations for designing efficient stochastic optimization and nonequilibrium simulation algorithms for computing free energies are discussed and illustrated.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-06-02
    Description: In this paper, we study Jarzynski's equality and fluctuation theorems for diffusion processes. While some of the results considered in the current work are known in the (mainly physics) literature, we review and generalize these nonequilibrium theorems using mathematical arguments, therefore enabling further investigations in the mathematical community. On the numerical side, variance reduction approaches such as importance sampling method are studied in order to compute free energy differences based on Jarzynski's equality.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-19
    Description: Markov jump processes are widely used to model natural and engineered processes. In the context of biological or chemical applications one typically refers to the chemical master equation (CME), which models the evolution of the probability mass of any copy-number combination of the interacting particles. When many interacting particles (“species”) are considered, the complexity of the CME quickly increases, making direct numerical simulations impossible. This is even more problematic when one aims at controlling the Markov jump processes defined by the CME. In this work, we study both open loop and feedback optimal control problems of the Markov jump processes in the case that the controls can only be switched at fixed control stages. Based on Kurtz’s limit theorems, we prove the convergence of the respective control value functions of the underlying Markov decision problem as the copy numbers of the species go to infinity. In the case of the optimal control problem on a finite time-horizon, we propose a hybrid control policy algorithm to overcome the difficulties due to the curse of dimensionality when the copy number of the involved species is large. Two numerical examples demonstrate the suitability of both the analysis and the proposed algorithms.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...