Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Due to technical work, the interlibrary loan service wont be available from March 28th until presumably April 3rd.
Export
Filter
  • 2015-2019  (28)
Source
Years
Year
Language
  • 1
    Publication Date: 2020-08-05
    Description: We consider a stationary discrete-time linear process that can be observed by a finite number of sensors. The experimental design for the observations consists of an allocation of available resources to these sensors. We formalize the problem of selecting a design that maximizes the information matrix of the steady-state of the Kalman filter, with respect to a standard optimality criterion, such as $D-$ or $A-$optimality. This problem generalizes the optimal experimental design problem for a linear regression model with a finite design space and uncorrelated errors. Finally, we show that under natural assumptions, a steady-state optimal design can be computed by semidefinite programming.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-22
    Description: We study an extension of the shortest path network interdiction problem and present a novel real-world application in this area. We consider the problem of determining optimal locations for toll control stations on the arcs of a transportation network. We handle the fact that drivers can avoid control stations on parallel secondary roads. The problem is formulated as a mixed integer program and solved using Benders decomposition. We present experimental results for the application of our models to German motorways.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Description: The problem of allocating operating rooms (OR) to surgical cases is a challenging task, involving both combinatorial aspects and uncertainty handling. In this article, we formulate this problem as a job shop scheduling problem, in which the job durations follow a lognormal distribution. We propose to use a cutting-plane approach to solve a robust version of this optimization problem. To this end, we develop an algorithm based on fixed-point iterations to solve the subproblems that identify worst-case scenarios and generate cut inequalities. The procedure is illustrated with numerical experiments based on real data from a major hospital in Berlin.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Description: We prove a mathematical programming characterisation of approximate partial D-optimality under general linear constraints. We use this characterisation with a branch-and-bound method to compute a list of all exact D-optimal designs for estimating a pair of treatment contrasts in the presence of a nuisance time trend up to the size of 24 consecutive trials.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: We propose an algorithm to approximate the distribution of the completion time (makespan) and the tardiness costs of a project, when durations are lognormally distributed. This problem arises naturally for the optimization of surgery scheduling, where it is very common to assume lognormal procedure times. We present an analogous of Clark's formulas to compute the moments of the maximum of a set of lognormal variables. Then, we use moment matching formulas to approximate the earliest starting time of each activity of the project by a shifted lognormal variable. This approach can be seen as a lognormal variant of a state-of-the-art method used for the statistical static timing analysis (SSTA) of digital circuits. We carried out numerical experiments with instances based on real data from the application to surgery scheduling. We obtained very promising results, especially for the approximation of the mean overtime in operating rooms, for which our algorithm yields results of a similar quality to Monte-Carlo simulations requiring an amount of computing time several orders of magnitude larger.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Description: Model-based optimal design of experiments (M-bODE) is a crucial step in model parametrization since it encloses a framework that maximizes the amount of information extracted from a battery of lab experiments. We address the design of M-bODE for dynamic models considering a continuous representation of the design. We use Semidefinite Programming (SDP) to derive robust minmax formulations for nonlinear models, and extend the formulations to other criteria. The approaches are demonstrated for a CSTR where a two-step reaction occurs.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-05
    Description: Let the design of an experiment be represented by an $s-$dimensional vector $w$ of weights with nonnegative components. Let the quality of $w$ for the estimation of the parameters of the statistical model be measured by the criterion of $D-$optimality, defined as the $m$th root of the determinant of the information matrix $M(w)=\sum_{i=1}^s w_i A_i A_i^T$, where $A_i$,$i=1,\ldots,s$ are known matrices with $m$ rows. In this paper, we show that the criterion of $D-$optimality is second-order cone representable. As a result, the method of second-order cone programming can be used to compute an approximate $D-$optimal design with any system of linear constraints on the vector of weights. More importantly, the proposed characterization allows us to compute an exact $D-$optimal design, which is possible thanks to high-quality branch-and-cut solvers specialized to solve mixed integer second-order cone programming problems. Our results extend to the case of the criterion of $D_K-$optimality, which measures the quality of $w$ for the estimation of a linear parameter subsystem defined by a full-rank coefficient matrix $K$. We prove that some other widely used criteria are also second-order cone representable, for instance, the criteria of $A-$, $A_K$-, $G-$ and $I-$optimality. We present several numerical examples demonstrating the efficiency and general applicability of the proposed method. We show that in many cases the mixed integer second-order cone programming approach allows us to find a provably optimal exact design, while the standard heuristics systematically miss the optimum.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-22
    Description: We study an extension of the shortest path network interdiction problem and present a novel real-world application in this area. We consider the problem of determining optimal locations for toll control stations on the arcs of a transportation network. We handle the fact that drivers can avoid control stations on parallel secondary roads. The problem is formulated as a mixed integer program and solved using Benders decomposition. We present experimental results for the application of our models to German motorways.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-22
    Description: The problem of allocating operating rooms (OR) to surgical cases is a challenging task, involving both combinatorial aspects and uncertainty handling. We formulate this problem as a parallel machines scheduling problem, in which job durations follow a lognormal distribution, and a fixed assignment of jobs to machines must be computed. We propose a cutting-plane approach to solve the robust counterpart of this optimization problem. To this end, we develop an algorithm based on fixed-point iterations that identifies worst-case scenarios and generates cut inequalities. The main result of this article uses Hilbert's projective geometry to prove the convergence of this procedure under mild conditions. We also propose two exact solution methods for a similar problem, but with a polyhedral uncertainty set, for which only approximation approaches were known. Our model can be extended to balance the load over several planning periods in a rolling horizon. We present extensive numerical experiments for instances based on real data from a major hospital in Berlin. In particular, we find that: (i) our approach performs well compared to a previous model that ignored the distribution of case durations; (ii) compared to an alternative stochastic programming approach, robust optimization yields solutions that are more robust against uncertainty, at a small price in terms of average cost; (iii) the \emph{longest expected processing time first} (LEPT) heuristic performs well and efficiently protects against extreme scenarios, but only if a good prediction model for the durations is available. Finally, we draw a number of managerial implications from these observations.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-05
    Description: We consider the stochastic extensible bin packing problem (SEBP) in which n items of stochastic size are packed into m bins of unit capacity. In contrast to the classical bin packing problem, the number of bins is fixed and they can be extended at extra cost. This problem plays an important role in stochastic environments such as in surgery scheduling: Patients must be assigned to operating rooms beforehand, such that the regular capacity is fully utilized while the amount of overtime is as small as possible. This paper focuses on essential ratios between different classes of policies: First, we consider the price of non-splittability, in which we compare the optimal non-anticipatory policy against the optimal fractional assignment policy. We show that this ratio has a tight upper bound of 2. Moreover, we develop an analysis of a fixed assignment variant of the LEPT rule yielding a tight approximation ratio of (1+e−1)≈1.368 under a reasonable assumption on the distributions of job durations. Furthermore, we prove that the price of fixed assignments, related to the benefit of adaptivity, which describes the loss when restricting to fixed assignment policies, is within the same factor. This shows that in some sense, LEPT is the best fixed assignment policy we can hope for.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...