Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (16)
Source
Years
Year
Language
  • 1
    Publication Date: 2022-03-11
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-11
    Description: For mating, leafhoppers (Cicadellidae) use substrate-borne vibrational signals to communicate. We provide the first complete description of the abdominal chordotonal organs that enable the perception of these signals. This supplementary data provides the aligned stack of 450 semithin serial sections of the first and second abdominal segment of an adult male Rhododendron leafhopper (Graphocephala fennahi). Further, this supplementary data comprises the segmentation files of five chordotonal organs, the exoskeleton, the segmental nerves and the spiracles of the first and the second abdominal segment. Due to time limitations, the structures of only one half of the body were segmented. The specimen was caught by hand net in September 2018 in Berlin-Tiergarten, Germany. Samples were embedded in Araldite® 502 resin and cut transversally in 1 μm thick sections using a Leica ultramicrotome and a DIATOME Histo Jumbo 6.0 mm diamond knife. Sections were placed on microscopic slides and stained with methylene blue/azur II. The images were taken by means of a 3DHISTECH PANNORAMIC SCAN II slide scanner in the Institute of Pathology Charité in Berlin-Mitte, Germany. Images with a voxel size of 0.273809 μm x 0.273809 μm x 1 μm where obtained. The images were converted from MRXS-files to TIFF-files with the 3DHistech software Slide Converter 2.3. Using Photoshop, the images were cropped to the same canvas size and artefacts were removed. All further steps, such as alignment and segmentation, were done with the software Amira. In order to facilitate the further processing of the dataset, the voxels where resampled to a size of 0.547619 μm x 0.547619 μm x 1 μm.
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-19
    Description: An advantageous property of mesh-based geometric morphometrics (GM) towards landmark-based approaches, is the possibility of precisely examining highly irregular shapes and highly topographic surfaces. In case of spherical-harmonics-based GM the main requirement is a completely closed mesh surface, which often is not given, especially when dealing with natural objects. Here we present a methodological workflow to prepare 3D segmentations containing large cavity openings for the conduction of spherical-harmonics-based GM. This will be exemplified with a case study on claws of hermit crabs (Paguroidea, Decapoda, Crustacea), whereby joint openings – between manus and “movable finger” – typify the large-cavity-opening problem. We found a methodology including an ambient-occlusion-based segmentation algorithm leading to results precise and suitable to study the inter- and intraspecific differences in shape of hermit crab claws. Statistical analyses showed a significant separation between all examined diogenid and pagurid claws, whereas the separation between all left and right claws did not show significance. Additionally, the procedure offers other benefits. It is easy to reproduce and creates sparse variance in the data, closures integrate smoothly into the total structures and the algorithm saves a significant amount of time.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-19
    Description: The images of D’Arcy Wentworth Thompson’s book “On Growth and Form” got an iconic status and became influential for biometrics and other mathematical approaches to organismic form. In particular, this is true for those of the chapter on the theory of transformation, which even has an impact on art and humanities. Based on his approach, Thompson formulated far-reaching conclusions with a partly anti-Darwinian stance. Here, we use the example of Thompson’s transformation of crab carapaces to test to what degree the transformation of grids, landmarks, and shapes result in congruent images. For comparison, we applied the same series of tests to digitized carapaces of real crabs. Both approaches show similar results. Only the simple transformations show a reasonable form of congruence. In particular, the transformations to majoid spider crabs reveal a complicated transformation of grids with partly crossing lines. By contrast, the carapace of the lithodid species is relatively easily created despite the fact that it is no brachyuran, but evolved a spider crab-like shape convergently from a hermit crab ancestor.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-19
    Description: A prerequisite for many analysis tasks in modern comparative biology is the segmentation of 3-dimensional (3D) images of the specimens being investigated (e.g. from microCT data). Depending on the specific imaging technique that was used to acquire the images and on the image resolution, different segmentation tools will be required. While some standard tools exist that can often be applied for specific subtasks, building whole processing pipelines solely from standard tools is often difficult. Some tasks may even necessitate the implementation of manual interaction tools to achieve a quality that is sufficient for the subsequent analysis. In this work, we present a pipeline of segmentation tools that can be used for the semi-automatic segmentation and quantitative analysis of voids in tissue (i.e. internal structural porosity). We use this pipeline to analyze lacuno-canalicular networks in stingray tesserae from 3D images acquired with synchrotron microCT. * The first step of this processing pipeline, the segmentation of the tesserae, was performed using standard marker-based watershed segmentation. The efficient processing of the next two steps, that is, the segmentation of all lacunae spaces belonging to a specific tessera and the separation of these spaces into individual lacunae required modern, recently developed tools. * For proofreading, we developed a graph-based interactive method that allowed us to quickly split lacunae that were accidentally merged, and to merge lacunae that were wrongly split. * Finally, the tesserae and their corresponding lacunae were subdivided into anatomical regions of interest (structural wedges) using a semi- manual approach.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-19
    Description: In most vertebrates the embryonic cartilaginous skeleton is replaced by bone during development. During this process, cartilage cells (chondrocytes) mineralize the extracellular matrix and undergo apoptosis, giving way to bone cells (osteocytes). In contrast, sharks and rays (elasmobranchs) have cartilaginous skeletons throughout life, where only the surface mineralizes, forming a layer of tiles (tesserae). Elasmobranch chondrocytes, unlike those of other vertebrates, survive cartilage mineralization and are maintained alive in spaces (lacunae) within tesserae. However, the function(s) of the chondrocytes in the mineralized tissue remain unknown. Applying a custom analysis workflow to high-resolution synchrotron microCT scans of tesserae, we characterize the morphologies and arrangements of stingray chondrocyte lacunae, using lacunar morphology as a proxy for chondrocyte morphology. We show that the cell density is comparable in unmineralized and mineralized tissue from our study species and that cells maintain the similar volume even when they have been incorporated into tesserae. This discovery supports previous hypotheses that elasmobranch chondrocytes, unlike those of other taxa, do not proliferate, hypertrophy or undergo apoptosis during mineralization. Tessera lacunae show zonal variation in their shapes—being flatter further from and more spherical closer to the unmineralized cartilage matrix and larger in the center of tesserae— and show pronounced organization into parallel layers and strong orientation toward neighboring tesserae. Tesserae also exhibit local variation in lacunar density, with the density considerably higher near pores passing through the tesseral layer, suggesting pores and cells interact (e.g. that pores contain a nutrient source). We hypothesize that the different lacunar types reflect the stages of the tesserae formation process, while also representing local variation in tissue architecture and cell function. Lacunae are linked by small passages (canaliculi) in the matrix to form elongate series at the tesseral periphery and tight clusters in the center of tesserae, creating a rich connectivity among cells. The network arrangement and the shape variation of chondrocytes in tesserae indicate that cells may interact within and between tesserae and manage mineralization differently from chondrocytes in other vertebrates, perhaps performing analogous roles to osteocytes in bone.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-07-19
    Description: In most vertebrates the embryonic cartilaginous skeleton is replaced by bone during development. During this process, cartilage cells (chondrocytes) mineralize the extracellular matrix and undergo apoptosis, giving way to bone cells (osteocytes). In contrast, sharks and rays (elasmobranchs) have cartilaginous skeletons throughout life, where only the surface mineralizes, forming a layer of tiles (tesserae). Elasmobranch chondrocytes, unlike those of other vertebrates, survive cartilage mineralization and are maintained alive in spaces (lacunae) within tesserae. However, the function(s) of the chondrocytes in the mineralized tissue remain unknown. Applying a custom analysis workflow to high-resolution synchrotron microCT scans of tesserae, we characterize the morphologies and arrangements of stingray chondrocyte lacunae, using lacunar morphology as a proxy for chondrocyte morphology. We show that the cell density is comparable in unmineralized and mineralized tissue from our study species and that cells maintain the similar volume even when they have been incorporated into tesserae. This discovery supports previous hypotheses that elasmobranch chondrocytes, unlike those of other taxa, do not proliferate, hypertrophy or undergo apoptosis during mineralization. Tessera lacunae show zonal variation in their shapes—being flatter further from and more spherical closer to the unmineralized cartilage matrix and larger in the center of tesserae— and show pronounced organization into parallel layers and strong orientation toward neighboring tesserae. Tesserae also exhibit local variation in lacunar density, with the density considerably higher near pores passing through the tesseral layer, suggesting pores and cells interact (e.g. that pores contain a nutrient source). We hypothesize that the different lacunar types reflect the stages of the tesserae formation process, while also representing local variation in tissue architecture and cell function. Lacunae are linked by small passages (canaliculi) in the matrix to form elongate series at the tesseral periphery and tight clusters in the center of tesserae, creating a rich connectivity among cells. The network arrangement and the shape variation of chondrocytes in tesserae indicate that cells may interact within and between tesserae and manage mineralization differently from chondrocytes in other vertebrates, perhaps performing analogous roles to osteocytes in bone.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-19
    Description: An advantageous property of mesh-based geometric morphometrics (GM) towards landmark-based approaches, is the possibility of precisely examining highly irregular shapes and highly topographic surfaces. In case of spherical-harmonics-based GM the main requirement is a completely closed mesh surface, which often is not given, especially when dealing with natural objects. Here we present a methodological workflow to prepare 3D segmentations containing large cavity openings for the conduction of spherical-harmonics-based GM. This will be exemplified with a case study on claws of hermit crabs (Paguroidea, Decapoda, Crustacea), whereby joint openings – between manus and “movable finger” – typify the large-cavity-opening problem. We found a methodology including an ambient-occlusion-based segmentation algorithm leading to results precise and suitable to study the inter- and intraspecific differences in shape of hermit crab claws. Statistical analyses showed a significant separation between all examined diogenid and pagurid claws, whereas the separation between all left and right claws did not show significance. Additionally, the procedure offers other benefits. It is easy to reproduce and creates sparse variance in the data, closures integrate smoothly into the total structures and the algorithm saves a significant amount of time.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-07-19
    Description: We present a software-assisted workflow for the alignment and matching of filamentous structures across a 3D stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After an initial alignment, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. Supported by a visual quality assessment of regions that have been already inspected, this allows a trade-off between quality and manual labor. The software tool was developed to investigate cell division by quantitative 3D analysis of microtubules (MTs) in both mitotic and meiotic spindles. For this, each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. In practice, automatic stitching alone provides only an incomplete solution, because large physical distortions and a low signal-to-noise ratio often cause experimental difficulties. To derive 3D models of spindles despite the problems related to sample preparation and subsequent data collection, semi-automatic validation and correction is required to remove stitching mistakes. However, due to the large number of MTs in spindles (up to 30k) and their resulting dense spatial arrangement, a naive inspection of each MT is too time consuming. Furthermore, an interactive visualization of the full image stack is hampered by the size of the data (up to 100 GB). Here, we present a specialized, interactive, semi-automatic solution that considers all requirements for large-scale stitching of filamentous structures in serial-section image stacks. The key to our solution is a careful design of the visualization and interaction tools for each processing step to guarantee real-time response, and an optimized workflow that efficiently guides the user through datasets.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-19
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...