Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (18)
Source
Years
Year
Language
  • 1
    Publication Date: 2023-11-03
    Description: On average, an approved drug today costs $2-3 billion and takes over ten years to develop1. In part, this is due to expensive and time-consuming wet-lab experiments, poor initial hit compounds, and the high attrition rates in the (pre-)clinical phases. Structure-based virtual screening (SBVS) has the potential to mitigate these problems. With SBVS, the quality of the hits improves with the number of compounds screened2. However, despite the fact that large compound databases exist, the ability to carry out large-scale SBVSs on computer clusters in an accessible, efficient, and flexible manner has remained elusive. Here we designed VirtualFlow, a highly automated and versatile open-source platform with perfect scaling behaviour that is able to prepare and efficiently screen ultra-large ligand libraries of compounds. VirtualFlow is able to use a variety of the most powerful docking programs. Using VirtualFlow, we have prepared the largest and freely available ready-to-dock ligand library available, with over 1.4 billion commercially available molecules. To demonstrate the power of VirtualFlow, we screened over 1 billion compounds and discovered a small molecule inhibitor (iKeap1) that engages KEAP1 with nanomolar affinity (Kd = 114 nM) and disrupts the interaction between KEAP1 and the transcription factor NRF2. We also identified a set of structurally diverse molecules that bind to KEAP1 with submicromolar affinity. This illustrates the potential of VirtualFlow to access vast regions of the chemical space and identify binders with high affinity for target proteins.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-03
    Description: The aim of this paper is to investigate the rebinding effect, a phenomenon describing a "short-time memory" which can occur when projecting a Markov process onto a smaller state space. For guaranteeing a correct mapping by the Markov State Model, we assume a fuzzy clustering in terms of membership functions, assigning degrees of membership to each state. The macro states are represented by the membership functions and may be overlapping. The magnitude of this overlap is a measure for the strength of the rebinding effect, caused by the projection and stabilizing the system. A minimal bound for the rebinding effect included in a given system is computed as the solution of an optimization problem. Based on membership functions chosen as a linear combination of Schur vectors, this generalized approach includes reversible as well as non-reversible processes.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-03
    Description: We consider a stochastic optimal exit time feedback control problem. The Bellman equation is solved approximatively via the Policy Iteration algorithm on a polynomial ansatz space by a sequence of linear equations. As high degree multi-polynomials are needed, the corresponding equations suffer from the curse of dimensionality even in moderate dimensions. We employ tensor-train methods to account for this problem. The approximation process within the Policy Iteration is done via a Least-Squares ansatz and the integration is done via Monte-Carlo methods. Numerical evidences are given for the (multi dimensional) double well potential and a three-hole potential.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-03
    Description: Raman spectroscopy is a well established tool for the analysis of vibration spectra, which then allow for the determination of individual substances in a chemical sample, or for their phase transitions. In the Time-Resolved-Raman-Sprectroscopy the vibration spectra of a chemical sample are recorded sequentially over a time interval, such that conclusions for intermediate products (transients) can be drawn within a chemical process. The observed data-matrix M from a Raman spectroscopy can be regarded as a matrix product of two unknown matrices W and H, where the first is representing the contribution of the spectra and the latter represents the chemical spectra. One approach for obtaining W and H is the non-negative matrix factorization. We propose a novel approach, which does not need the commonly used separability assumption. The performance of this approach is shown on a real world chemical example.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-03
    Description: Structure-based virtual screening approaches have the ability to dramatically reduce the time and costs associated to the discovery of new drug candidates. Studies have shown that the true hit rate of virtual screenings improves with the scale of the screened ligand libraries. Therefore, we have recently developed an open source drug discovery platform (VirtualFlow), which is able to routinely carry out ultra-large virtual screenings. One of the primary challenges of molecular docking is the circumstance when the protein is highly dynamic or when the structure of the protein cannot be captured by a static pose. To accommodate protein dynamics, we report the extension of VirtualFlow to allow the docking of ligands using a grey wolf optimization algorithm using the docking program GWOVina, which substantially improves the quality and efficiency of flexible receptor docking compared to AutoDock Vina. We demonstrate the linear scaling behavior of VirtualFlow utilizing GWOVina up to 128 000 CPUs. The newly supported docking method will be valuable for drug discovery projects in which protein dynamics and flexibility play a significant role.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-11-03
    Description: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics. Here we leverage the power of our recently developed in silico screening platform, VirtualFlow, to identify inhibitors that target SARS-CoV-2. VirtualFlow is able to efficiently harness the power of computing clusters and cloud-based computing platforms to carry out ultra-large scale virtual screens. In this unprecedented structure-based multi-target virtual screening campaign, we have used VirtualFlow to screen an average of approximately 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets in the cloud. In addition to targeting the active sites of viral enzymes, we also target critical auxiliary sites such as functionally important protein-protein interaction interfaces. This multi-target approach not only increases the likelihood of finding a potent inhibitor, but could also help identify a collection of anti-coronavirus drugs that would retain efficacy in the face of viral mutation. Drugs belonging to different regimen classes could be combined to develop possible combination therapies, and top hits that bind at highly conserved sites would be potential candidates for further development as coronavirus drugs. Here, we present the top 200 in silico hits for each target site. While in-house experimental validation of some of these compounds is currently underway, we want to make this array of potential inhibitor candidates available to researchers worldwide in consideration of the pressing need for fast-tracked drug development.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-03
    Description: The docking program PLANTS, which is based on ant colony optimization (ACO) algorithm, has many advanced features for molecular docking. Among them are multiple scoring functions, the possibility to model explicit displaceable water molecules, and the inclusion of experimental constraints. Here, we add support of PLANTS to VirtualFlow (VirtualFlow Ants), which adds a valuable method for primary virtual screenings and rescoring procedures. Furthermore, we have added support of ligand libraries in the MOL2 format, as well as on the fly conversion of ligand libraries which are in the PDBQT format to the MOL2 format to endow VirtualFlow Ants with an increased flexibility regarding the ligand libraries. The on the fly conversion is carried out with Open Babel and the program SPORES. We applied VirtualFlow Ants to a test system involving KEAP1 on the Google Cloud up to 128,000 CPUs, and the observed scaling behavior is approximately linear. Furthermore, we have adjusted several central docking parameters of PLANTS (such as the speed parameter or the number of ants) and screened 10 million compounds for each of the 10 resulting docking scenarios. We analyzed their docking scores and average docking times, which are key factors in virtual screenings. The possibility of carrying out ultra-large virtual screening with PLANTS via VirtualFlow Ants opens new avenues in computational drug discovery.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-03
    Description: Long range corrections for molecular simulations of inhomogeneous fluids with a spherical interface are presented. Correction terms for potential energy, force and virial are derived for the monatomic Lennard–Jones fluid. The method is generalised to the Mie potential and arbitrary molecular structures, employing a numerically efficient centre of mass cut-off scheme. The results are validated by a series of droplet simulations for one-centre and two-centre Lennard–Jones fluids with different cut-off radii rc. Systems with rc=8σ provide a check of self-consistence. Further, a system containing a bubble is investigated for the one-centre Lennard–Jones fluid. The equilibrium properties are almost completely independent on the cut-off radius. In comparison with vapour–liquid equilibrium data for systems without a curved interface, all properties show the expected behaviour. Simulation data are used to approximate the surface tension, which is in good agreement with the findings for planar interfaces, thus verifying the present corrections.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-11-03
    Description: Die aktuelle Pandemie verdeutlicht, wie wichtig es ist, rasch geeignete Arzneimittel zu finden. In Computer­simulationen gelingt das erheblich schneller als im Labor. Gegen das Coronavirus ließen sich auf diese Weise bereits Wirkstoffkandidaten identifizieren.
    Language: German
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-11-03
    Description: Virtual screening-based approaches to discover initial hit and lead compounds have the potential to reduce both the cost and time of early drug discovery stages, as well as to find inhibitors for even challenging target sites such as protein–protein interfaces. Here in this review, we provide an overview of the progress that has been made in virtual screening methodology and technology on multiple fronts in recent years. The advent of ultra-large virtual screens, in which hundreds of millions to billions of compounds are screened, has proven to be a powerful approach to discover highly potent hit compounds. However, these developments are just the tip of the iceberg, with new technologies and methods emerging to propel the field forward. Examples include novel machine-learning approaches, which can reduce the computational costs of virtual screening dramatically, while progress in quantum-mechanical approaches can increase the accuracy of predictions of various small molecule properties.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...