Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
Years
Year
Language
  • 1
    Publication Date: 2023-01-09
    Description: This work presents an innovative short to mid-term forecasting model that analyzes nonlinear complex spatial and temporal dynamics in energy networks under demand and supply balance constraints using Network Nonlinear Time Series (TS) and Mathematical Programming (MP) approach. We address three challenges simultaneously, namely, the adjacency matrix is unknown; the total amount in the network has to be balanced; dependence is unnecessarily linear. We use a nonparametric approach to handle the nonlinearity and estimate the adjacency matrix under the sparsity assumption. The estimation is conducted with the Mathematical Optimisation method. We illustrate the accuracy and effectiveness of the model on the example of the natural gas transmission network of one of the largest transmission system operators (TSOs) in Germany, Open Grid Europe. The obtained results show that, especially for shorter forecasting horizons, proposed method outperforms all considered benchmark models, improving the avarage nMAPE for 5.1% and average RMSE for 79.6% compared to the second-best model. The model is capable to capture the nonlinear dependencies in the complex spatial-temporal network dynamics and benefits from both sparsity assumption and the demand and supply balance constraint.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-02
    Description: With annual consumption of approx. 95 billion cubic meters and similar amounts of gas just transshipped through Germany to other EU states, Germany’s gas transport system plays a vital role in European energy supply. The complex, more than 40,000 km long high-pressure transmission network is controlled by several transmission system operators (TSOs) whose main task is to provide security of supply in a cost-efficient way. Given the slow speed of gas flows through the gas transmission network pipelines, it has been an essential task for the gas network operators to enhance the forecast tools to build an accurate and effective gas flow prediction model for the whole network. By incorporating the recent progress in mathematical programming and time series modeling, we aim to model natural gas network and predict gas in- and out-flows at multiple supply and demand nodes for different forecasting horizons. Our model is able to describe the dynamics in the network by detecting the key nodes, which may help to build an optimal management strategy for transmission system operators.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-24
    Description: Due to the coexistence of different gases in underground storage, this work explores the interface stability's impact on energy storage, specifically during the injection and withdrawal of gases such as hydrogen and natural gas. A new approach of combing simulation and time series analysis is used to accurately predict instability modes in energy systems. Our simulation is based on the 2D Euler equations, solved using a second-order finite volume method with a staggered grid. The solution is validated by comparing them to experimental data and analytical solutions, accurately predicting the instability's behavior. We use time series analysis and state-of-the-art regime-switching methods to identify critical features of the interface dynamics, providing crucial insights into system optimization and design.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-26
    Description: Energy systems are complex networks consisting of various interconnected components. Accurate energy demand and supply forecasts are crucial for efficient system operation and decision-making. However, high-dimensional data, complex network structures, and dynamic changes and disruptions in energy networks pose significant challenges for forecasting models. To address this, we propose a hybrid approach for resilient forecasting of network time series (HRF-NTS) in the energy domain. Our approach combines mathematical optimization methods with state-of-the-art machine learning techniques to achieve accurate and robust forecasts for high-dimensional energy network time series. We incorporate an optimization framework to account for uncertainties and disruptive changes in the energy system. The effectiveness of the proposed approach is demonstrated through a case study of forecasting energy demand and supply in a complex, large-scale natural gas transmission network. The results show that the hybrid approach outperforms alternative prediction models in terms of accuracy and resilience to structural changes and disruptions, providing stable, multi-step ahead forecasts for different short to mid-term forecasting horizons.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...