Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (51)
Source
Years
Year
Language
  • 1
    Publication Date: 2022-07-19
    Description: Biological erosion is a key process for the recycling of carbonate and the formation of calcareous sediments in the oceans. Experimental studies showed that bioerosion is subject to distinct temporal variability, but previous long-term studies were restricted to tropical waters. Here, we present results from a 14-year bioerosion experiment that was carried out along the rocky limestone coast of the island of Rhodes, Greece, in the Eastern Mediterranean Sea, in order to monitor the pace at which bioerosion affects carbonate substrate and the sequence of colonisation by bioeroding organisms. Internal macrobioerosion was visualised and quantified by micro-computed tomography and computer-algorithm-based segmentation procedures. Analysis of internal macrobioerosion traces revealed a dominance of bioeroding sponges producing eight types of characteristic Entobia cavity networks, which were matched to five different clionaid sponges by spicule identification in extracted tissue. The morphology of the entobians strongly varied depending on the species of the producing sponge, its ontogenetic stage, available space, and competition by other bioeroders. An early community developed during the first 5 years of exposure with initially very low macrobioerosion rates and was followed by an intermediate stage when sponges formed large and more diverse entobians and bioerosion rates increased. After 14 years, 30 % of the block volumes were occupied by boring sponges, yielding maximum bioerosion rates of 900 g m^−2 yr^−1. A high spatial variability in macrobioerosion prohibited clear conclusions about the onset of macrobioerosion equilibrium conditions. This highlights the necessity of even longer experimental exposures and higher replication at various factor levels in order to better understand and quantify temporal patterns of macrobioerosion in marine carbonate environments.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-07-19
    Language: English
    Type: poster , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-19
    Description: The cartilaginous endoskeletons of sharks and rays are covered by tiles of mineralized cartilage called tesserae that enclose areas of unmineralized cartilage. These tesselated layers are vital to the growth as well as the material properties of the skeleton, providing both flexibility and strength. An understanding of the principles behind the tiling of the mineralized layer requires a quantitative analysis of shark and ray skeletal tessellation. However, since a single skeletal element comprises several thousand tesserae, manual segmentation is infeasible. We developed an automated segmentation pipeline that, working from micro-CT data, allows quantification of all tesserae in a skeletal element in less than an hour. Our segmentation algorithm relies on aspects we have learned of general tesseral morphology. In micro-CT scans, tesserae usually appear as round or star-shaped plate-like tiles, wider than deep and connected by mineralized intertesseral joints. Based on these observations, we exploit the distance map of the mineralized layer to separate individual tiles using a hierarchical watershed algorithm. Utilizing a two-dimensional distance map that measures the distance in the plane of the mineralized layer only greatly improves the segmentation. We developed post-processing techniques to quickly correct segmentation errors in regions where tesseral shape differs from the assumed shape. Evaluation of our results is done qualitatively by visual comparison with raw datasets, and quantitatively by comparison to manual segmentations. Furthermore, we generate two-dimensional abstractions of the tiling network based on the neighborhood, allowing representation of complex, biological forms as simpler geometries. We apply our newly developed techniques to the analysis of the left and right hyomandibulae of four ages of stingray enabling the first quantitative analyses of the tesseral tiling structure, while clarifying how these patterns develop across ontogeny.
    Language: English
    Type: poster , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-19
    Description: In civil engineering, the corrosion of steel reinforcements in structural elements of concrete bares a risk of stability-reduction, mainly caused by the exposure to chlorides. 3D computed tomography (CT) reveals the inner structure of concrete and allows one to investigate the corrosion with non-destructive testing methods. To carry out such investigations, specimens with a large artificial crack and an embedded steel rebar have been manufactured. 3D CT images of those specimens were acquired in the original state. Subsequently three cycles of electrochemical pre-damaging together with CT imaging were applied. These time series have been evaluated by means of image processing algorithms to segment and quantify the corrosion products. Visualization of the results supports the understanding of how corrosion propagates into cracks and pores. Furthermore, pitting of structural elements can be seen without dismantling. In this work, several image processing and visualization techniques are presented that have turned out to be particularly effective for the visualization and segmentation of corrosion products. Their combination to a workflow for corrosion analysis is the main contribution of this work.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-19
    Description: The endoskeletons of sharks and rays are composed of an unmineralized cartilaginous core, covered in an outer layer of mineralized tiles called tesserae. The tessellated layer is vital to the growth as well as the material properties of the skeletal element, providing both flexibility and strength. However, characterizing the relationship between tesseral size and shape, and skeletal growth and mechanics is challenging because tesserae are small (a few hundred micrometers wide), anchored to the surrounding tissue in complex three-dimensional ways, and occur in huge numbers. Using a custom-made semi-automatic segmentation algorithm, we present the first quantitative and three-dimensional description of tesserae in micro-CT scans of whole skeletal elements. Our segmentation algorithm relies on aspects we have learned of general tesseral morphology. We exploit the distance map of the mineralized layer to separate individual tiles using a hierarchical watershed algorithm. Additionally, we have developed post-processing techniques to quickly correct segmentation errors. Our data reveals that the tessellation is not regular, with tesserae showing a great range of shapes, sizes and number of neighbors. This is partly region-dependent: for example, thick, columnar tesserae are arranged in series along convex edges with small radius of curvature (RoC), whereas more brick-or disc-shaped tesserae are found in planar areas. We apply our newly developed techniques on the left and right hyomandibula (skeletal elements supporting the jaws) from four different ages of a stingray species, to clarify how tiling patterns develop across ontogeny and differ within and between individuals. We evaluate the functional consequences of tesseral morphologies using finite element analysis and 3d-printing, for a better understanding of shark skeletal mechanics, but also to extract fundamental engineering design principles of tiling arrangements on load-bearing three-dimensional objects.
    Language: English
    Type: poster , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-19
    Description: Structural properties of molecules are of primary concern in many fields. This report provides a comprehensive overview on techniques that have been developed in the fields of molecular graphics and visualization with a focus on applications in structural biology. The field heavily relies on computerized geometric and visual representations of three-dimensional, complex, large, and time-varying molecular structures. The report presents a taxonomy that demonstrates which areas of molecular visualization have already been extensively investigated and where the field is currently heading. It discusses visualizations for molecular structures, strategies for efficient display regarding image quality and frame rate, covers different aspects of level of detail, and reviews visualizations illustrating the dynamic aspects of molecular simulation data. The survey concludes with an outlook on promising and important research topics to foster further success in the development of tools that help to reveal molecular secrets.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-07-19
    Description: Two new species of cheilostome Bryozoa are described from continental-slope habitats off Mauritania, including canyon and coldwater-coral (mound) habitats. Internal structures of both species were visualised and quantified using micro-computed tomographic (micro-CT) methods. Cellaria bafouri n. sp. is characterised by the arrangement of zooids in alternating longitudinal rows, a smooth cryptocyst, and the presence of an ooecial plate with denticles. Smittina imragueni n. sp. exhibits many similarities with Smittina cervicornis (Pallas, 1766), but differs especially in the shape and orientation of the suboral avicularium. Observations on Smittina imragueni and material labelled as Smittina cervicornis suggest that the latter represents a species group, members of which have not yet been discriminated, possibly because of high intracolony variation and marked astogenetic changes in surface morphology. Both new species are known only from the habitats where they were collected, probably reflecting the paucity of bryozoan sampling from this geographic area and depth range. Both species are able to tolerate low oxygen concentration, which is assumed to be compensated by the high nutrient supply off Mauritania. The application of micro-CT for the semiautomatic quantification of zooidal skeletal characters was successfully tested. We were able to automatically distinguish individual zooidal cavities and acquire corresponding morphological datasets. Comparing the obtained results with conventional SEM measurements allowed ascertaining the reliability of this new method. The employment of micro-CT allows the observation and quantification of previously un- seen characters that can be used in describing and differentiating species that were previously indistinguishable. Further- more, this method might help elucidate processes of colony growth and the function of individual zooids during this process.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-19
    Description: We compute trajectories of dust grains starting from a homogeneous surface activity-profile on a irregularly shaped cometary nucleus. Despite the initially homogeneous dust distribution a collimation in jet-like structures becomes visible. The fine structure is caused by concave topographical features with similar bundles of normal vectors. The model incorporates accurately determined gravitational forces, rotation of the nucleus, and gas-dust interaction. Jet-like dust structures are obtained for a wide range of gas-dust interactions. For the comet 67P/Churyumov-Gerasimenko, we derive the global dust distribution around the nucleus and find several areas of agreement between the homogeneous dust emission model and the Rosetta observation of dust jets, including velocity-dependent bending of trajectories.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-07-19
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-19
    Description: In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an outlook on future challenges in the field.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...