Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
Years
Year
Language
  • 1
    Publication Date: 2020-01-16
    Description: The simulation of open molecular systems requires explicit or implicit reservoirs of energy and particles. Whereas full atomistic resolution is desired in the region of interest, there is some freedom in the implementation of the reservoirs. Here, a combined, explicit reservoir is constructed by interfacing the atomistic region with regions of point-like, non-interacting particles (tracers) embedded in a thermodynamic mean field. The tracer molecules acquire atomistic resolution upon entering the atomistic region and equilibrate with this environment, while atomistic molecules become tracers governed by an effective mean-field potential after crossing the atomistic boundary. The approach is extensively tested on thermodynamic, structural, and dynamic properties of liquid water. Conceptual and numerical advantages of the procedure as well as new perspectives are highlighted and discussed.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-21
    Description: The kinetics of bimolecular reactions in solution depends, among other factors, on intermolecular forces such as steric repulsion or electrostatic interaction. Microscopically, a pair of molecules first has to meet by diffusion before the reaction can take place. In this work, we establish an extension of Doi’s volume reaction model to molecules interacting via pair potentials, which is a key ingredient for interacting-particle-based reaction–diffusion (iPRD) simulations. As a central result, we relate model parameters and macroscopic reaction rate constants in this situation. We solve the corresponding reaction–diffusion equation in the steady state and derive semi- analytical expressions for the reaction rate constant and the local concentration profiles. Our results apply to the full spectrum from well-mixed to diffusion-limited kinetics. For limiting cases, we give explicit formulas, and we provide a computationally inexpensive numerical scheme for the general case, including the intermediate, diffusion-influenced regime. The obtained rate constants decompose uniquely into encounter and formation rates, and we discuss the effect of the potential on both subprocesses, exemplified for a soft harmonic repulsion and a Lennard-Jones potential. The analysis is complemented by extensive stochastic iPRD simulations, and we find excellent agreement with the theoretical predictions.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...