Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (6)
  • 2005-2009  (5)
Material
Years
Year
Person/Organisation
Keywords
Language
  • 1
    Title: Integration of Vehicle and Duty Scheduling in Public Transport /
    Author: Weider, Steffen
    Publisher: Göttingen :Cuvillier,
    Year of publication: 2007
    Pages: XIII, 199 S.
    Dissertation note: Berlin, Technische Universität, Diss., 2007
    ISBN: 978-3-86727-418-0 , 3-86727-418-5
    Type of Medium: Book
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-24
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-05
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Description: This paper proposes a highly integrated solution approach for rolling stock planning problems in the context of long distance passenger traffic between cities. The main contributions are a generic hypergraph-based mixed-integer programming model for the considered rolling stock rotation problem and an integrated algorithm for its solution. The newly developed algorithm is able to handle a large spectrum of industrial railway requirements, such as vehicle composition, maintenance constraints, infrastructure capacities, and regularity aspects. We show that our approach has the power to produce rolling stock rotations that can be implemented in practice. In this way, the rolling stock rotations at the largest German long distance operator Deutsche Bahn Fernverkehr AG could be optimized by an automated system utilizing advanced mathematical programming techniques.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: Integrated treatment of hitherto individual steps in the planning process of public transit companies discloses opportunities to reduce costs and to improve the quality of service. The arising integrated planning problems are complex and their solution requires the development of novel mathematical methods. This article proposes a mathematical optimization approach to integrate duty scheduling and rostering in public transit, which allows to significantly increase driver satisfaction at almost zero cost. This is important in order to to increase the attractiveness of the driver profession. The integration is based on coupling the subproblems by duty templates, which, compared to a coupling by duties, drastically reduces the problem complexity.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Description: Duty rostering problems occur in different application contexts and come in different flavors. They give rise to very large scale integer programs which ypically have lots of solutions and extremely fractional LP relaxations. In such a situation, heuristics can be a viable algorithmic choice. We propose an mprovement method of the Lin-Kernighan type for the solution of duty rostering problems. We illustrate its versatility and solution quality on three different applications in public transit, vehicle routing, and airline rostering with a focus on the management of preferences, fairness, and fatigue, respectively.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-03-09
    Description: The airline crew scheduling problem deals with the construction of crew rotations in order to cover the flights of a given schedule at minimum cost. The problem involves complex rules for the legality and costs of individual pairings and base constraints for the availability of crews at home bases. A typical instance considers a planning horizon of one month and several thousand flights. We propose a column generation approach for solving airline crew scheduling problems that is based on a set partitioning model. We discuss algorithmic aspects such as the use of bundle techniques for the fast, approximate solution of linear programs, a pairing generator that combines Lagrangean shortest path and callback techniques, and a novel rapid branching'' IP heuristic. Computational results for a number of industrial instances are reported. Our approach has been implemented within the commercial crew scheduling system NetLine/Crew of Lufthansa Systems Berlin GmbH.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-05
    Description: In many railway undertakings a railway timetable is offered that is valid for a longer period of time. At DB Fernverkehr AG, one of our industrial partners, this results in a summer and a winter timetable. For both of these timetables rotation plans, i.e., a detailed plan of railway vehicle movements is constructed as a template for this period. Sometimes there are be periods where you know for sure that vehicle capacities are not sufficient to cover all trips of the timetable or to transport all passenger of the trips. Reasons for that could be a heavy increase of passenger flow, a heavy decrease of vehicle availability, impacts from nature, or even strikes of some employees. In such events the rolling stock rotations have to be adapted. Optimization methods are particularly valuable in such situations in order to maintain a best possible level of service or to maximize the expected revenue using the resources that are still available. In most cases found in the literature, a rescheduling based on a timetable update is done, followed by the construction of new rotations that reward the recovery of parts of the obsolete rotations. We consider a different, novel, and more integrated approach. The idea is to guide the cancellation of the trips or reconfiguration of the vehicle composition used to operate a trip of the timetable by the rotation planning process, which is based on the mixed integer programming approach presented in Reuther (2017). The goal is to minimize the operating costs while cancelling or operating a trip with an insufficient vehicle configuration in sense of passenger capacities inflicts opportunity costs and loss of revenue, which are based on an estimation of the expected number of passengers. The performance of the algorithms presented in two case studies, including real world scenarios from DB Fernverkehr AG and a railway operator in North America.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-05
    Description: In many railway undertakings a railway timetable is offered that is valid for a longer period of time. At DB Fernverkehr AG, one of our industrial partners, this results in a summer and a winter timetable. For both of these timetables rotation plans, i.e., a detailed plan of railway vehicle movements is constructed as a template for this period. Sometimes there are be periods where you know for sure that vehicle capacities are not sufficient to cover all trips of the timetable or to transport all passenger of the trips. Reasons for that could be a heavy increase of passenger flow, a heavy decrease of vehicle availability, impacts from nature, or even strikes of some employees. In such events the rolling stock rotations have to be adapted. Optimization methods are particularly valuable in such situations in order to maintain a best possible level of service or to maximize the expected revenue using the resources that are still available. In most cases found in the literature, a rescheduling based on a timetable update is done, followed by the construction of new rotations that reward the recovery of parts of the obsolete rotations. We consider a different, novel, and more integrated approach. The idea is to guide the cancellation of the trips or reconfiguration of the vehicle composition used to operate a trip of the timetable by the rotation planning process, which is based on the mixed integer programming approach presented in Reuther (2017). The goal is to minimize the operating costs while cancelling or operating a trip with an insufficient vehicle configuration in sense of passenger capacities inflicts opportunity costs and loss of revenue, which are based on an estimation of the expected number of passengers. The performance of the algorithms presented in two case studies, including real world scenarios from DB Fernverkehr AG and a railway operator in North America.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-12-15
    Description: This thesis describes the algorithm IS-OPT that integrates scheduling of vehicles and duties in public bus transit. IS-OPT is the first algorithm which solves integrated vehicle and duty scheduling problems arising in medium sized carriers such that its solutions can be used in daily operations without further adaptions. This thesis is structured as follows: The first chapter highlights mathematical models of the planning process of public transit companies and examines their potential for integrating them with other planning steps. It also introduces descriptions of the vehicle and the duty scheduling problem. Chapter 2 motivates why it can be useful to integrate vehicle and duty scheduling, explains approaches of the literature, and gives an outline of our algorithm IS-OPT. The following chapters go into the details of the most important techniques and methods of IS-OPT: In Chapter 3 we describe how we use Lagrangean relaxation in a column generation framework. Next, in Chapter 4, we describe a variant of the proximal bundle method (PBM) that is used to approximate linear programs occurring in the solution process. We introduce here a new variant of the PBM which is able to utilize inexact function evaluation and the use of epsilon-subgradients. We also show the convergence of this method under certain assumptions. Chapter 5 treats the generation of duties for the duty scheduling problem. This problem is modeled as a resourceconstraint- shortest-path-problem with non-linear side constraints and nearly linear objective function. It is solved in a two-stage approach. At first we calculate lower bounds on the reduced costs of duties using certain nodes by a new inexact label-setting algorithm. Then we use these bounds to speed up a depth-first-search algorithm that finds feasible duties. In Chapter 6 we present the primal heuristic of IS-OPT that solves the integrated problem to integrality. We introduce a new branch-and-bound based heuristic which we call rapid branching. Rapid branching uses the proximal bundle method to compute lower bounds, it introduces a heuristic node selection scheme, and it utilizes a new branching rule that fixes sets of many variables at once. The common approach to solve the problems occurring in IS-OPT is to trade inexactness of the solutions for speed of the algorithms. This enables, as we show in Chapter 7, to solve large real world integrated problems by IS-OPT. The scheduled produced by IS-OPT save up to 5% of the vehicle and duty cost of existing schedules of regional and urban public transport companies.
    Description: Diese Arbeit beschreibt den Algorithmus IS-OPT, welcher der erste Algorithmus ist, der integrierte Umlauf- und Dienstplanungsprobleme für mittelgroße Verkehrsunternehmen löst und dabei alle betrieblichen Einzelheiten berücksichtigt. Seine Lösungen können daher direkt in den täglichen Betrieb übernommen werden. Im ersten Kapitel werden mathematische Modelle für verschiedenen Probleme aus dem Planungsprozess von Nahverkehrsunternehmen beschrieben. Es werden Ansätze zur Integration der einzelnen Probleme untersucht. In diesem Kapitel werden außerdem das Umlauf- und das Dienstplanungsproblem eingeführt. Kapitel 2 motiviert, warum Integration von Umlauf- und Dienstplanung hilfreich ist oder in welchen Fällen sie sogar unabdingbar ist; es gibt einen Überblick über die vorhanden Literatur zur integrierten Umlauf- und Dienstplanung und umreißt unseren Algorithmus IS-OPT. Die weiteren Kapitel behandeln die in IS-OPT verwendeten Methoden: In Kapitel 3 beschreiben wir, wie Spaltenerzeugung für lineare Programme mit Lagrange-Relaxierung und Subgradienten-Verfahren kombiniert werden kann. In Kapitel 4 wird unsere Variante der proximalen Bündelmethode beschrieben. Diese wird benutzt um näherungsweise primale und duale Lösungen von lineare Programmen zu berechnen. Unsere Variante ist angepasst, um auch mit ungenauer Funktionsauswertung und Epsilon-Subgradienten arbeiten zu können. Wir zeigen die Konvergenz dieser Variante unter bestimmten Annahmen. Kapitel 5 behandelt das Erzeugen von Diensten für das Dienstplanungsproblem. Dieses Problem ist als ein Kürzeste-Wege-Problem mit nichtlinearen Nebenbedingungen und fast linearer Zielfunktion modelliert. Wir lösen es, indem zuerst Schranken für die reduzierten Kosten von Diensten, die bestimmte Knoten benutzen, berechnet werden. Diese Schranken werden benutzt, um in einem Tiefensuchalgorithmus den Suchbaum klein zu halten. Im Kapitel 6 präsentieren wir die neu entwickelte Heuristik "Rapid Branching", die eine ganzzahlige Lösung des integrierten Problems berechnet. Rapid Branching kann als eine spezielle Branch-and-Bound-Heuristik gesehen werden, welche die Bündelmethode benutzt. In den Knoten des Suchbaums können mehrere Variablen auf einmal fixiert werden, die mit Hilfe einer Perturbationsheuristik ausgewählt werden. In Kapitel 7 schließlich zeigen wir, daß wir mit IS-OPT auch große Probleminstanzen aus der Praxis lösen können und dabei bis zu 5% der Fahrzeug- und Dienstkosten sparen können.
    Keywords: ddc:510
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...