Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 35 (2005), S. 539-569 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In the nanoscience era, the properties of many exciting new materials and devices will depend on the details of their composition down to the level of single atoms. Thus the characterization of the structure and electronic properties of matter at the atomic scale is becoming ever more vital for economic and technological as well as for scientific reasons. The combination of atomic-resolution Z-contrast scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) represents a powerful method to link the atomic and electronic structure to macroscopic properties, allowing materials, nanoscale systems, and interfaces to be probed in unprecedented detail. Z-contrast STEM uses electrons that have been scattered to large angles for imaging. The relative intensity of each atomic column is roughly proportional to Z2, where Z is the atomic number. Recent developments in correcting the aberrations of the lenses in the electron microscope have pushed the achievable spatial resolution and the sensitivity for imaging and spectroscopy in the STEM into the sub-A??ngstrom (sub-A??) regime, providing a new level of insight into the structure/property relations of complex materials. Images acquired with an aberration-corrected instrument show greatly improved contrast. The signal-to-noise ratio is sufficiently high to allow sensitivity even to single atoms in both imaging and spectroscopy. This is a key achievement because the detection and measurement of the response of individual atoms has become a challenging issue to provide new insight into many fields, such as catalysis, ceramic materials, complex oxide interfaces, or grain boundaries. In this article, the state-of-the-art for the characterization of all of these different types of materials by means of aberration-corrected STEM and EELS are reviewed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...