Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    PO Box 1354, 9600 Garsington Road, Oxford OX4 2XG, UK. : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 28 (2005), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Flaking failure caused by surface cracks of silicon nitride ceramic bearings has been investigated from the viewpoint of the ring crack model. However, the relation between surface and subsurface cracks under rolling contact fatigue is not fully understood. In this investigation subsurface cracks branching from an initial surface crack were observed in detail, and the process of flaking failure was investigated. The specimens were observed prior to the separation of the surface layers and it was found that the initial surface cracks grew vertically to the surfaces and did not curve as predicted by the ring crack model. Subsurface cracks branched from the single surface cracks and grew in a direction parallel to the surface. They grew in both the same and the opposite directions to the ball movement, with small upward and downward branches. These subsurface cracks grew prior to the semi-circular surface cracks. From these observations it was concluded that the flaking failures are not caused directly by the surface cracks, but by the subsurface cracks that branch from them.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 361-363 (Nov. 2007), p. 335-338 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We have successfully developed novel “chelate-setting apatite cement” usinghydroxyapatite (HAp) particles surface-modified with inositol phosphate (IP6) . The HAp particlessurface-modified with IP6 were mixed with water (HAp/water ratio = 1.00/0.50[w/w]) to fabricateapatite cements. We have examined the biocompatibility of the apatite cement using the culturesystem of MC3T3-E1 cells and the rabbit model. The cell-culture test using MC3T3-E1 cells hasshown that the apatite cement has noncytotoxicity. This cement has been implanted into tibiae ofrabbits. When tissue response was examined histologically up to 24 weeks, new bone formationwas observed around the surface of the cement. The present work demonstrates that this apatitecement is useful as a material for artificial bone grafting
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...