Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
  • 1
    Electronic Resource
    Electronic Resource
    PO Box 1354, 9600 Garsington Road, Oxford OX4 2XG, UK. : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 28 (2005), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A known factor that limits the performance of automotive front-end accessory serpentine belt drive is cracking of the elastomer located in the rib tip. In this paper, fracture experiments were conducted using single-edge notched tension (SENT) specimens to study the fracture behaviour of a belt rib compound. A finite-element modelling method utilizing singular elements for crack in rubber solid was proposed and implemented in both plane-stress and 3D solid models using ABAQUS. A newly developed neural-network-based model was used to represent a nonlinear elastic belt rib rubber compound. The crack finite-element model, along with the neural-network-based material model, was verified with analytical and experimental results. A global–local finite-element procedure was developed to evaluate the J-integral for mode-I through-the-thickness crack in V-ribbed belt rib. Effects of pre-crack length, pulley pre-load and backside pulley displacement were investigated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...