Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (7)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 105 (July 2005), p. 415-420 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Notes: The centrifugal solid-particle method has proved to be effective in producing functionally graded materials (FGMs). In this study, Al-Al3Ti FGMs, were produced by this centrifugal method, from an Al-5 wt % Ti master alloy. Applied centrifugal forces were 30, 60 and 120G (units of gravity). Samples from the outer surface of each specimen were cut and aluminum matrix texture analyzed by Schulz reflection method. Analysis of the resulting pole figures indicates a preferred orientation along the (200) plane for the aluminum matrix crystals. Furthermore, increasing the applied centrifugal force enhances the orientation effect. Al3Ti platelet orientation and area fraction at the samples’ outer surface along three observation planes were also measured. The Al3Ti platelets in the outer region are orientated perpendicular to the centrifugal force direction along two of the observed planes, also an increase in centrifugal force leads to an increase in orientation in those two planes. The intermetallic particle volume fraction also increases with higher applied centrifugal force, although not significantly. A correlation appears to exist between particle orientation and the preferred orientation of the matrix
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 492-493 (Aug. 2005), p. 33-38 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Functionally graded aluminium matrix composites reinforced with SiC particles areattractive materials for a broad range of engineering applications whenever a superior combination of surface and bulk mechanical properties is required. In general, these materials are developed for the production of high wear resistant components. Also, often this kind of mechanical part operates in the presence of aggressive environments, such as marine atmospheres. In this work, aluminiumcomposites with functionally graded properties, obtained by centrifugal cast, are characterised by reciprocating pin-on-plate sliding wear tests against nodular cast iron. Three different volume fractions of SiC reinforcing particles in each functionally graded material were considered. Sliding experiments were performed with and without the presence of a lubricant (3% NaCl aqueous solution). In the case of the lubricated tests, electrochemical parameters (corrosion potential) were monitored during sliding. Friction values were in the order of 0.42 for unlubricated conditions, but varied between 0.22 and 0.37 when the aqueous solution was present. For all test conditions, relatively high wear rates (over 1×10-6 gm-1) were obtained, particularly for the cast iron pin. The volume fraction of SiC particlesexerted a net effect on the tribological response of the composites, although conditioned by the presence or absence of the aqueous solution. The worn surface morphology of the composites indicated that the presence of the aqueous solution modifies the protective action promoted by the combined effect of the presence of reinforcing particles as load bearing elements and the formation of adherent iron-rich tribolayers. The evolution of the corrosion potential during the sliding action is inaccordance to the degradation mechanisms proposed for these systems
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 492-493 (Aug. 2005), p. 189-194 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Practical applications of metal/ceramic joints can be found in the biomedical fieldregarding the encapsulation of implantable telemetric devices, the fabrication of crowns and bridges for dental restoration, or in the production of drug delivery systems, biomedical sensors and electrodes. Most of metal/ceramic joints are produced by the active metal brazing technique, which originates a multi-layered interface which should be able of accommodating the abrupt electronic,crystallographic, chemical, mechanical and thermo-mechanical discontinuity that characterize these systems. Additionally, when considering biomedical applications, corrosion resistance becomes of prime importance. In this work, the corrosion resistance of Ti/glass-ceramic interfaces obtained by active metal brazing was evaluated by electrochemical impedance spectroscopy (EIS) tests. The electrochemical behaviour of the interface was monitored, as a function of time, in a simulated physiological solution at room temperature. In order to evaluate the contribution of each layer and galvanic interactions between them, to the degradation mechanism of the interface, individual samples, representative of reaction layers present at the interface, were fabricated and electrochemicallytested. Results show that the corrosion behaviour, of the whole interface was strongly influenced by the chemical composition of its constitutive layers. Thus, layers containing high contents of both titanium and silver showed a polarisation resistance increase with the immersion time, as a result of the formation of a thermodynamically stable passive film. On the other hand, the copper rich layer,appears to be the main responsible for the interface degradation. In fact, for high immersion times, an instable passive film is formed and, as a consequence, large amounts of copper are released. Galvanic interactions between the copper and the silver rich layers where also identified
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 492-493 (Aug. 2005), p. 609-614 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Al-Al3Zr and Al-Al3Ti functionally graded materials (FGMs) were produced by acentrifugal method from Al-5wt% Zr and Al-5wt% Ti alloys, respectively. Applied centrifugal forces were 30, 60 and 120G (units of gravity). Microstructural characterization was performed to evaluate the intermetallic particles’ distribution and orientation. Knoop hardness tests were carried out, with the indenter’s long diameter normal to the centrifugal force direction. Both the Al3Zr and the Al3Tiintermetallic particles are platelet in morphology. These platelets tend to be oriented normal to the centrifugal force direction. Higher applied centrifugal force increases both the intermetallic platelet volume fraction as well as their orientation in the outer regions of the fabricated FGM rings. Also higher orientation and volume fraction distribution are observed in the Al- Al3Ti FGMs. Knoop hardness measurements in general follow the same trend as the intermetallic particle volume fraction for each sample
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Reliability of functionally graded metal matrix composites (FGMMCs) for automotive components is still dependent on the detailed knowledge of the mechanisms of the microstructural build-up, for instance on the mechanisms leading to the distribution and relative positions of the reinforcing particles. In order to assess the influence of the SiC particle size on the 3-D inter-particle connectivity in functionally graded Al/SiCp composites produced by centrifugal casting, X-raymicrotomography experiments were performed at the ID19 beamline in ESRF (European Synchrotron Radiation Facility). The FGMMCs consisted of an Al-10Si-2Mg alloy matrix, reinforced by an average SiC particle volume fraction of 0.10; two different average sizes were used: 37 µm and 12 µm. The holographic modification of the X-ray CMT (Computer Micro- Tomography) method allowed to obtain neatly contrasted images, as opposed to classical CMT.Good agreement was found between the particle size evaluated by CMT and by laser interferometry. Particle clustering has been evaluated in number and volume, showing that a lowermean particle size is related to more clustering. Such an adverse effect relies on the importance of particle/liquid alloy surface tension. Also, the mean particle size has been evaluated as a function of particle number within a cluster: as expected, the larger a cluster, the larger the particles inside it
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Syntactic functionally graded metal matrix composites (SFGMMC) are a class ofmetallic foams in which closed porosity results from the presence of hollow ceramic microspheres(microballoons), whose spatial distribution varies continuously between the inner and the outersection of the part, thus resulting in a continuous variation in properties. In this work, aluminiumbasedSFGMMC rings were fabricated by radial centrifugal casting. The graded composition alongthe radial direction is controlled mainly by the difference in the centrifugal forces which act on themolten metal matrix and the ceramic particles, due to their dissimilar densities. In this case wherethe density of the SiO2-Al2O3 microballoons is lower than that of molten aluminium, the particlesshow a tendency to remain closer to the inner periphery of the ring. Thus the microballoon volumefraction increases along the radial direction of the ring from the outer to the inner periphery; inother words, the particle-rich zone is limited to an inner layer of the ring. Precursor conventionalMMCs were prepared by stir-casting from the constituent materials, by homogeneously dispersingcommercial SiO2-Al2O3 microballoons (particle size: 50 µm; particle volume fraction: 5 and 10 %)within a molten commercial Al-7Si-0.3Mg (A356) alloy. The resulting MMCs were then re-meltand centrifugally cast in order to produce the functionally graded composites. Particle gradients inthe centrifugally cast composites were investigated by quantitative image analysis of opticalmicrographs (for the estimation of the particle volume fraction, mean particle diameter and porosityvolume fraction)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1662-0356
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Natural Sciences in General , Technology
    Notes: This paper provides a brief overview of the possibilities offered by X-ray computedmicrotomography, and particularly synchrotron radiation X-ray microtomography, regarding metalmatrix composite characterization, emphasis being placed in the case of Al-based functionallygraded materials. Examples are provided concerning the characterization of the reinforcementpopulation, interfacial properties, in-situ transformation and damage evolution. The specific needsof the technique and limitations to its widespread use are mentioned
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...