Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (2)
  • 1
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. A new species of microsporidia from Drosophila melanogaster was investigated by light and electron microscopy and by ribosomal RNA (rRNA) sequencing. This microsporidium and the previously described Nosema kingi and Nosema acridophagus have been transferred to the new genus Tubulinosema gen. nov. with the following characters: nuclei are in diplokaryotic arrangement during the life cycle. All stages are in direct contact with the host cell cytoplasm, slightly anisofilar polar tube with the last coils being smaller in diameter arranged in one or two rows on both sides of the diplokaryon and small tubuli on the surface of late meronts. Spores are oval or slightly pyriform. Thick endospore wall, thinner over anchoring disc. This new genus and the genus Brachiola have been placed in a new family Tubulinosematidae fam. nov. Phylogenetic analysis of small subunit rRNA sequences by different methods placed Tubulinosema spp. in one clade with the genus Brachiola forming its sister clade, which is distant from the clade containing the true Nosema spp. including Nosema bombycis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Tubulinosema ratisbonensis is a microsporidian pathogen of Drosophila melanogaster belonging to the family Tubulinosematidae. The microsporidia in this family mainly cause infections in invertebrate hosts, but two members of this family, Brachiola vesicularum and Brachiola algerae, have been found to cause infections in humans as well. Moreover, B. algerae can be transmitted to immunodeficient mice and grows in mammalian cell cultures. Thus, the examination of the opportunistic properties of other members of the family Tubulinosematidae is important. Spores of T. ratisbonensis, isolated from infected fruit flies, were used to inoculate mammalian and insect cell cultures. Parasite growth was only seen in human lung fibroblasts. No growth was seen in Vero cells or insect cell cultures. Comparison of growth kinetics at 31°C and 37°C showed that there were fewer and smaller parasitic foci in cultures incubated at 37°C. Transmission electron microscopy revealed the typical ultrastructure of T. ratisbonensis, and scanning electron microscopy showed oval or slightly pyriform spores, with some spores having extruded their polar tubes. The PCR-amplified sequences of rDNA fragments from infected cell cultures were 100% identical to the original T. ratisbonensis rRNA sequence. As T. ratisbonensis is able to proliferate in mammalian cell cultures, it may have the opportunistic properties of other members of the family Tubulinosematidae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...