Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 505-507 (Jan. 2006), p. 661-666 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This study demonstrated that DNA associated with magnetic nanoparticles can be attracted to specific areas of cell surfaces under magnetic fields, which highly increased the DNA concentration at specific areas and further enhanced the gene transfection in an electroporation (EP) method. The superparamagnetic nanoparticle’s distribution could be operated by magnetic field, where the gravity effect could be neglected. Compared with the electroporation with and withoutelectrostatic attracting force, the magneto-electroporation with magnetic attracting force showed higher delivery rate (63.05 %) in the electroporation processes. Simulating an asymmetric magnetic field helps to create experiment environment with different intensities of magnetic flux density. The resultant difference can be identified by the profile of fluorescence. This report focused onenhancement and targeting of gene transfection using 6 nm γ-Fe2O3 nanoparticles and electroporation microchips
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...