Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • 2000-2004  (2)
Material
  • Electronic Resource  (2)
Years
Year
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The 10 GHz ECR-I ion source at ATLAS is being modified to create a small inner volume within the main plasma chamber to reduce the residual helium background gas load. This effort is part of an experiment to measure the residual concentration of 3He in highly isotopically enriched 4He samples. The modification consists of a new extractor electrode on which is integrally mounted a 2.5-cm-diam quartz tube of approximately 8 cm length. Energizing just the extraction coil produces an ECR only inside the quartz volume. The quartz tube is pumped only through the 1-mm-diam extraction hole. rf power is provided by propagation through the main plasma tank acting as a multimode waveguide. The source must operate in the pressure regime of 10–200 mTorr in order to achieve sufficient sensitivity to measure a 3He/4He ratio of approximately 1×10−15. Results of these tests and the operation of the source in this highly unusual mode will be presented. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Two techniques for the discrete injection of material into an Electron Cyclotron Resonance ion source (ECRIS) have been developed for the purpose of measuring the ionization and confinement times of ion species. Previously only solid materials in conjunction with a pulsed laser were used in these studies due to the discrete material introduction produced by this configuration. The first method replaces the pulsed laser with a fast high voltage pulse applied to a sputter sample. The high voltage pulse has a rise time of 100 ns, fall time of 80.0 μs, and variable pulse duration. The second method utilizes a fast-pulsed gas valve capable of producing a gas pulse 160 μs in width. These pulse widths are well below the ionization times of the lower charge states and thus allows for time measurements to be made of all charge states. Both of these techniques can be employed to study the effects of rf power, coil configuration, biased disk, and gas mixing on ionization and confinement times. Rise times for neon, argon, and gold will be presented. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...