Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2005-2009  (1)
  • 2000-2004  (1)
Materialart
Erscheinungszeitraum
  • 2005-2009  (1)
  • 2000-2004  (1)
Jahr
  • 1
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Using an in vitro microsuperfusion procedure, the NMDA-evoked release of [3H]ACh was studied after suppression of dopamine (DA) transmission (α-methyl-p-tyrosine) in striatal compartments of the rat. The effects of tachykinin neurokinin 1 (NK1) receptor antagonists and the ability of appropriate agonists to counteract the antagonist responses were investigated to determine whether tachykinin NK1 classic, septide-sensitive and/or new NK1-sensitive receptors mediate these regulations. The NK1 antagonists, SR140333, SSR240600, GR205171 but not GR82334 and RP67580 (0.1 and 1 µm) markedly reduced the NMDA (1 mm + d-serine 10 µm)-evoked release of [3H]ACh only in the matrix. These responses unchanged by coapplication with NMDA of NK2 or NK3 agonists, [Lys5,MeLeu9,Nle10]NKA(4–10) or senktide, respectively, were completely counteracted by the selective NK1 agonist, [Pro9]substance P but also by neurokinin A and neuropeptide K (1 nm each). According to the rank order of potency of agonists for counteracting the antagonist responses ([Pro9]substance P, 0.013 nm 〉 neurokinin A, 0.15 nm ≫ substance P(6–11) 7.7 nm = septide 8.7 nm), the new NK1-sensitive receptors mediate the facilitation by endogenous tachykinins of the NMDA-evoked release of ACh in the matrix, after suppression of DA transmission. Solely the NK1 antagonists having a high affinity for these receptors could be used as indirect anti-cholinergic agents.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1460-9568
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Striatal cholinergic interneurons play a crucial role in the control of movement as well as in motivational and learning aspects of behaviour. Neuropeptides regulate striatal cholinergic transmission and particularly activation of mu opioid receptor (MOR) inhibits acetylcholine (ACh) release in the dorsal striatum. In the present study we investigated whether this cholinergic transmission could be modulated by an enkephalin/MOR direct process. We show that mRNA and protein of MORs are expressed by cholinergic interneurons in the limbic/prefrontal territory but not by those in the sensorimotor territory of the dorsal striatum. These MORs are functional because potassium-evoked release of ACh from striatal synaptosomes was dose-dependently reduced by a selective MOR agonist, this effect being suppressed by a MOR antagonist. The MOR regulation of cholinergic interneurons presented a diurnal variation. (i) The percentage of cholinergic interneurons containing MORs that was 32% at the beginning of the light period (morning) increased to 80% in the afternoon. (ii) The MOR-mediated inhibition of synaptosomal ACh release was higher in the afternoon than in the morning. (iii) While preproenkephalin mRNA levels remained stable, enkephalin tissue content was the lowest (−32%) in the afternoon when the spontaneous (+35%) and the N-methyl-d-aspartate-evoked (+140%) releases of enkephalin (from microsuperfused slices) were the highest. Therefore, by acting on MORs present on cholinergic interneurons, endogenously released enkephalin reduces ACh release. This direct enkephalin/MOR regulation of cholinergic transmission that operates only in the limbic/prefrontal territory of the dorsal striatum might contribute to information processing in fronto-cortico-basal ganglia circuits.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...