Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Keywords Oscillation, metabolism, oxygen tension, insulin release, islet, glucose, tolbutamide, heterogeneity, Clark electrode, ELISA.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. The role of beta-cell metabolism for generation of oscillatory insulin release was investigated by simultaneous measurements of oxygen tension (pO2) and insulin release from individual islets of Langerhans.¶Methods. Individual islets isolated from the ob/ob-mice were perifused. Insulin in the perifusate was measured with a sensitive ELISA and pO2 with a modified Clark-type electrode inserted into the islets.¶Results. In the presence of 3 mmol/l d-glucose, pO2 was 102 ± 9 mmHg and oscillatory (0.26 ± 0.04 oscillations/min). Corresponding insulin measurements showed oscillatory release with similar periodicity (0.25 ± 0.02 oscillations/min). When the d-glucose concentration was increased to 11 mmol/l, pO2 decreased by 30 % to 72 ± 10 mmHg with maintained frequency of the oscillations. Corresponding insulin secretory rate rose from 5 ± 2 to 131 ± 16 pmol · g–1· s–1 leaving the frequency of the insulin pulses unaffected. The magnitude of glucose-induced change in pO2 varied between islets but was positively correlated to the amount of insulin released (r 2 = 0.85). When 1 mmol/l tolbutamide was added to the perifusion medium containing 11 mmol/l glucose no change in average oscillatory pO2 was observed despite a doubling in the secretory rate. When 8 mmol/l 3-oxymethyl glucose was added to perifusion medium containing 3 mmol/l d-glucose, neither pO2 nor insulin release of the islets were changed. Temporal analysis of oscillations in pO2 and insulin release revealed that maximum respiration correlated to maximum or close to maximum insulin release.¶Conclusion/interpretation. The temporal relation between oscillations in pO2 and insulin release supports a role for metabolic oscillations in the generation of pulsatile insulin release. [Diabetologia (2000) 43: 1313–1318]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...