Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 173 (2000), S. 187-201 
    ISSN: 1432-1424
    Keywords: Key words: Permeability — Gramicidin A — Partition coefficients — Lipid bilayers — Membrane transport — Linear free-energy relationships
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. The influence of the nonchannel conformation of the transmembrane protein gramicidin A on the permeability coefficients of neutral and ionized α-X-p-methyl-hippuric acid analogues (XMHA) (X = H, OCH3, CN, OH, COOH, and CONH2) across egg-lecithin membranes has been investigated in vesicle efflux experiments. Although 10 mol% gramicidin A increases lipid chain ordering, it enhances the transport of neutral XMHA analogues up to 8-fold, with more hydrophilic permeants exhibiting the greatest increase. Substituent contributions to the free energies of transfer of both neutral and anionic XMHA analogues from water into the bilayer barrier domain were calculated. Linear free-energy relationships were established between these values and those for solute partitioning from water into decadiene, chlorobutane, butyl ether, and octanol to assess barrier hydrophobicity. The barrier domain is similar for both neutral and ionized permeants and substantially more hydrophobic than octanol, thus establishing its location as being beyond the hydrated headgroup region and eliminating transient water pores as the transport pathway for these permeants, as the hydrated interface or water pores would be expected to be more hydrophilic than octanol. The addition of 10 mol% gramicidin A alters the barrier domain from a decadiene-like solvent to one possessing a greater hydrogen-bond accepting capacity. The permeability coefficients for ionized XMHAs increase with Na+ or K+ concentration, exhibiting saturability at high ion concentrations. This behavior can be quantitatively rationalized by Gouy-Chapman theory, though ion-pairing cannot be conclusively ruled out. The finding that transmembrane proteins alter barrier selectivity, favoring polar permeant transport, constitutes an important step toward understanding permeability in biomembranes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 177 (2000), S. 137-148 
    ISSN: 1432-1424
    Keywords: Key words: Permeability coefficients — Gramicidin A — Cholesterol — Lipid bilayers — Solubility parameters — Fluorescence anisotropy — Regular solution theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. The influence of varying concentrations of a transmembrane peptide, gramicidin A (gA), and cholesterol (Chol) on the passive permeation of p-methylhippuric acid (MHA) and α-carbamoyl-p-methylhippuric acid (CMHA) across egg-lecithin membranes (EPC) has been investigated in vesicle efflux experiments. Incorporation of 0.25 volume fraction of gA in its nonchannel conformation increased the permeability coefficient (P m ) for CMHA by a factor of 6.0 ± 1.8 but did not alter P m for MHA, a more lipophilic permeant. In contrast, incorporation of 0.26 volume fraction Chol with no added protein decreased the P m values for both CMHA and MHA by similar factors of 4.2 ± 1.1 and 3.5 ± 1.2, respectively. A quantitative structure-transport model has been developed to account for the dependence of P m on the membrane concentrations of gA and Chol in terms of induced changes in both membrane chain ordering and hydrophobicity. Chain ordering is assumed to affect P m for both permeants similarly since they are comparable in molecular size, while changes in P m ratios in the presence of gA or Chol are attributed to alterations in membrane hydrophobicity. Changes in lipid chain ordering were detected by monitoring membrane fluidity using fluorescence anisotropy of 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene incorporated into the membranes. The influence of additives on membrane hydrophobicity, which governs P m ratios through effects on solute partitioning into the barrier domain, were rationalized within the framework of regular solution theory using solubility parameters as a measure of membrane hydrophobicity. Fits of the P m ratios using the theoretical model yielded solubility parameters for gA and Chol in EPC membranes of 13.2 and 7.7 (cal/ml)1/2, respectively, suggesting that gA decreases the barrier domain hydrophobicity while Chol has a minimal effect on barrier hydrophobicity. After correcting for barrier domain hydrophobicity, permeability decrements due to membrane ordering induced by gA or Chol were found to exhibit a strong correlation with membrane order as predicted by free-surface-area theory, regardless of whether gA or Chol is used as the ordering agent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...