Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
Material
Years
Year
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: During lateral root base nodulation, the microsymbiont Azorhizobium caulinodans enters its host plant, Sesbania rostrata, via the formation of outer cortical infection pockets, a process that is characterized by a massive production of H2O2. Infection threads guide bacteria from infection pockets towards nodule primordia. Previously, two mutants were constructed that produce lipopolysaccharides (LPSs) similar to one another but different from the wild-type LPS, and that are affected in extracellular polysaccharide (EPS) production. Mutant ORS571-X15 was blocked at the infection pocket stage and unable to produce EPS. The other mutant, ORS571-oac2, was impaired in the release from infection threads and was surrounded by a thin layer of EPS in comparison to the wild-type strain that produced massive amounts of EPS. Structural characterization revealed that EPS purified from cultured and nodule bacteria was a linear homopolysaccharide of α-1,3-linked 4,6-O-(1-carboxyethylidene)-d-galactosyl residues. In situ H2O2 localization demonstrated that increased EPS production during early stages of invasion prevented the incorporation of H2O2 inside the bacteria, suggesting a role for EPS in protecting the microsymbiont against H2O2. In addition, ex planta assays confirmed a positive correlation between increased EPS production and enhanced protection against H2O2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...