Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Berkeley, Calif. : Berkeley Electronic Press (now: De Gruyter)
    International journal of chemical reactor engineering 1.2003, 1, A43 
    ISSN: 1542-6580
    Source: Berkeley Electronic Press Academic Journals
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Autothermal radial flow reactors typically consist of a reactor setup of multiple catalyst-beds with internal heat exchange. These reactors are widely used because of their high efficiency due to the internal heat exchange, and radial flow arrangements are preferred due to their low pressure drops. Although an efficient multi-functional reactor arrangement, this setup has shown to provide for an additional destabilizing mechanism via the heat feedback. Thus, additional stability considerations are necessary when operating autothermal or non-adiabatic reactors at high conversions. This work proposes the formulation of a simplified model to investigate the effect of the heat transfer feedback on the stability of autothermal radial flow reactors. The present work focuses on a lumping approach to reduce the order of a complex distributed parameter system. The model is complex enough so as to preserve the intricacies of this reactor arrangement, but still yield a tractable dynamic formulation. The industrial ammonia synthesis process has been chosen as a case study to illustrate the proposed methodology. The lumped model predictions are qualitatively compared against numerical simulations of a detailed mathematical model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...