Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 2609-2612 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It is shown that laser driven hohlraums obtain significant internal pressures which affect the hydrodynamics of high-energy density shock-tube experiments. By incorporating this previously neglected hohlraum pressure effect (in addition to the usual x-ray drive) into computer simulations which model the NOVA laser driven supernova remnant experiment [R. P. Drake, S. G. Glendinning, K. Estabrook, B. A. Remington, R. McCray, R. J. Williams, L. J. Suter, T. B. Smith, J. J. Carroll III, R. A. London, and E. Liang, Phys. Rev. Lett. 81, 2068 (1998)], calculations are able to reproduce the observed structure of hydrodynamic features. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: More than a decade after the explosion of supernova 1987A, unresolved discrepancies still remain in attempts to numerically simulate the mixing processes initiated by the passage of a very strong shock through the layered structure of the progenitor star. Numerically computed velocities of the radioactive 56Ni and 56Co, produced by shock-induced explosive burning within the silicon layer, for example, are still more than 50% too low as compared with the measured velocities. To resolve such discrepancies between observation and simulation, an experimental testbed has been designed on the Omega Laser for the study of hydrodynamic issues of importance to supernovae (SNe). In this paper, results are presented from a series of scaled laboratory experiments designed to isolate and explore several issues in the hydrodynamics of supernova explosions. The results of the experiments are compared with numerical simulations and are generally found to be in reasonable agreement. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 4043-4051 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Theoretically, high-β (β∼1) tokamaks offer a large fusion power efficiency advantage over low-β devices. However, if high-β tokamaks are inherently unstable then such devices will never be realized. In particular, kink modes are thought to be the most serious obstacle to high-β operations. High-β tokamaks are characterized by a very large Shafranov shift with a thin "boundary layer" on the outboard side of the device and a large "core" region of vertical flux surfaces comprising most of the central volume. In this paper, the energy principle is used to compute the magnetohydrodynamic internal kink stability of such devices in the large aspect ratio limit with a low toroidal mode number. A class of internal kink mode similar to the usual low-β kink is present; the stability against these modes is computed. A set of parameters describing a kink stable high-β equilibrium is given. Stability is shown to be dependent on the shape of the plasma boundary. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...